论文标题

关于对抗性的鲁棒性:神经建筑搜索观点

On Adversarial Robustness: A Neural Architecture Search perspective

论文作者

Devaguptapu, Chaitanya, Agarwal, Devansh, Mittal, Gaurav, Gopalani, Pulkit, Balasubramanian, Vineeth N

论文摘要

在过去的几年中,深度学习模型的对抗性鲁棒性已获得了很多吸引力。提出了各种攻击和防御措施,以改善现代深度学习体系结构的对抗性鲁棒性。尽管所有这些方法有助于提高鲁棒性,但没有探索改善对抗性鲁棒性的一个有希望的方向,即神经网络体系结构的复杂拓扑。在这项工作中,我们解决了以下问题:神经网络的复杂拓扑是否可以提供对抗性的鲁棒性,而没有任何形式的对抗训练?我们通过尝试不同的手工制作和基于NAS的架构来实证回答这一点。我们的发现表明,对于小规模攻击,基于NAS的架构比手工制作的体系结构更适合小规模数据集和简单的任务。但是,随着数据集的大小或任务的复杂性增加,手工制作的体系结构比基于NAS的体系结构更强大。我们的工作是第一项大规模研究,纯粹是从建筑的角度来理解对抗性鲁棒性的研究。我们的研究表明,在飞镖的搜索空间(一种流行的NAS方法)中随机抽样可以使PGD攻击的鲁棒性提高近12 \%。我们表明,NAS以实现SOTA准确性而流行,可以提供对抗性准确性,作为免费的附加组件,而无需任何形式的对抗训练。我们的结果表明,通过诸如Ensembles之类的方法利用NAS方法的搜索空间可能是实现对抗性鲁棒性的绝佳方法,而无需任何形式的对抗训练。我们还引入了一个度量标准,该度量可用于计算清洁准确性和对抗性鲁棒性之间的权衡。代码和预训练的模型将在\ url {https://github.com/tdchaitanya/nas-robustness}提供。

Adversarial robustness of deep learning models has gained much traction in the last few years. Various attacks and defenses are proposed to improve the adversarial robustness of modern-day deep learning architectures. While all these approaches help improve the robustness, one promising direction for improving adversarial robustness is unexplored, i.e., the complex topology of the neural network architecture. In this work, we address the following question: Can the complex topology of a neural network give adversarial robustness without any form of adversarial training?. We answer this empirically by experimenting with different hand-crafted and NAS-based architectures. Our findings show that, for small-scale attacks, NAS-based architectures are more robust for small-scale datasets and simple tasks than hand-crafted architectures. However, as the size of the dataset or the complexity of task increases, hand-crafted architectures are more robust than NAS-based architectures. Our work is the first large-scale study to understand adversarial robustness purely from an architectural perspective. Our study shows that random sampling in the search space of DARTS (a popular NAS method) with simple ensembling can improve the robustness to PGD attack by nearly~12\%. We show that NAS, which is popular for achieving SoTA accuracy, can provide adversarial accuracy as a free add-on without any form of adversarial training. Our results show that leveraging the search space of NAS methods with methods like ensembles can be an excellent way to achieve adversarial robustness without any form of adversarial training. We also introduce a metric that can be used to calculate the trade-off between clean accuracy and adversarial robustness. Code and pre-trained models will be made available at \url{https://github.com/tdchaitanya/nas-robustness}

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源