论文标题

壮举:半监督学习的基于功能的增强

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

论文作者

Kuo, Chia-Wen, Ma, Chih-Yao, Huang, Jia-Bin, Kira, Zsolt

论文摘要

最新的最新半监督学习(SSL)方法将基于图像的转换和一致性正则化作为核心组件的组合。但是,这种方法仅限于简单的转换,例如传统数据增强或两个图像的凸组合。在本文中,我们提出了一种新型的基于特征的改进和增强方法,该方法会产生各种复杂的转换。重要的是,这些转换还使用了我们通过聚类提取的课堂和跨类原型表示的信息。我们通过将它们存储在存储库中,使用已经计算出的功能,从而消除了需要进行大量额外计算的需求。这些转换以及传统的基于图像的增强作用被用作基于一致性的正规化损失的一部分。我们证明,我们的方法可与较小数据集(CIFAR-10和SVHN)的当前艺术状态相媲美,同时能够扩展到较大的数据集,例如CIFAR-100和MINI-IMAGENET,在那里我们在艺术状态(\ textit {e.g。,}绝对17.44 \%\%\%\%\%\%在Mini-ImageNet上获得)。我们进一步测试了域网上的方法,证明了对室外未标记数据的更好鲁棒性,并执行严格的消融和分析以验证该方法。

Recent state-of-the-art semi-supervised learning (SSL) methods use a combination of image-based transformations and consistency regularization as core components. Such methods, however, are limited to simple transformations such as traditional data augmentation or convex combinations of two images. In this paper, we propose a novel learned feature-based refinement and augmentation method that produces a varied set of complex transformations. Importantly, these transformations also use information from both within-class and across-class prototypical representations that we extract through clustering. We use features already computed across iterations by storing them in a memory bank, obviating the need for significant extra computation. These transformations, combined with traditional image-based augmentation, are then used as part of the consistency-based regularization loss. We demonstrate that our method is comparable to current state of art for smaller datasets (CIFAR-10 and SVHN) while being able to scale up to larger datasets such as CIFAR-100 and mini-Imagenet where we achieve significant gains over the state of art (\textit{e.g.,} absolute 17.44\% gain on mini-ImageNet). We further test our method on DomainNet, demonstrating better robustness to out-of-domain unlabeled data, and perform rigorous ablations and analysis to validate the method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源