论文标题
e $ _ {6(6)} $异常Drinfel'd代数
E$_{6(6)}$ Exceptional Drinfel'd Algebras
论文作者
论文摘要
Drinfel'D代数(EDA)是引入的Leibniz代数,该代数提供了一个代数的基础,可以探索M理论中的U二元性概念。从本质上讲,它提供了一个理论的类似物,即Drinfel的双重编码字符串的t偶数性。在本说明中,我们详细介绍了EDA的构建,如果常规U-二元组为$ e_ {6(6)} $。我们展示了如何将EDA作为六维组歧管$ g $的特殊广义切线束的广义leibniz并行实现,并具有Nambu-lie结构。当EDA是串联类型时,我们会显示经典Yang-Baxter方程的天然概括。用一些示例进行了示例,其中包括一些嵌入Drinfel的双打和其他类型的构造。
The exceptional Drinfel'd algebra (EDA) is a Leibniz algebra introduced to provide an algebraic underpinning with which to explore generalised notions of U-duality in M-theory. In essence it provides an M-theoretic analogue of the way a Drinfel'd double encodes generalised T-dualities of strings. In this note we detail the construction of the EDA in the case where the regular U-duality group is $E_{6(6)}$. We show how the EDA can be realised geometrically as a generalised Leibniz parallelisation of the exceptional generalised tangent bundle for a six-dimensional group manifold $G$, endowed with a Nambu-Lie structure. When the EDA is of coboundary type, we show how a natural generalisation of the classical Yang-Baxter equation arises. The construction is illustrated with a selection of examples including some which embed Drinfel'd doubles and others that are not of this type.