论文标题
最大非线性和非保守量子电路
Maximally Nonlinear and Nonconservative Quantum Circuits
论文作者
论文摘要
在本文中,我们介绍了一种算法方法,以根据Circuctits的Digraph的发生率矩阵,找到一大批最大非线性电路(包括Josephson Tunnel连接,连贯的量子相滑动和超导通LOOP)的保守能量和非保守功率。我们考虑两端口线性电路,其主要是由Maxwell-Kirchhoff的当前规则或Maxwell-Kirchhoff的电压规则提供的大部分构成约束。该电路的自变量通常是自由度的超集,是从麦克斯韦 - 基尔乔夫当前或电压规则的解决方案空间中获得的。该方法不需要找到任何Lagrangian。取而代之的是,电路的经典或量子汉密尔顿是通过与汉密尔顿方程互补的转换来从反应性(即保守)电路元件的能量中获得的。耗散(损失)是通过使用瑞利耗散函数并定义广义泊松支架的 - 波森 - 雷利支架。将波动(噪声)添加为以浴模式为特征的电压或电流源。使用入射率 - 马trix方法将非保守元素(例如嘈杂的电阻器)从头开始,而无需将其视为单独的元素。最后,我们表明,为了形成一组完整的规范坐标,需要辅助(在某些情况下可能是寄生的)电路元素才能找到具有不完整的广义速度集的电路的哈密顿电路。特别是,我们引入了两种方法,以消除汉密尔顿还原或运动方程减少的坐标。我们使用辅助电路元件来处理最大的非线性电路,该电路同时包括约瑟夫森连接和量子相滑。
In this article, we introduce an algorithmic method to find the conservative energy and non-conservative power of a large class of maximally nonlinear electric circuits (including Josephson tunnel junctions, coherent quantum phase slips, and superconducting loops), based on the incidence matrix of the circuits' digraph. We consider two-port linear circuits with mostly holonomic constraints provided by either Maxwell-Kirchhoff's current rules or Maxwell-Kirchhoff's voltage rules. The circuit's independent variables, generally a superset of the degrees of freedom, are obtained from the solution space of Maxwell-Kirchhoff's current or voltage rules. The method does not require to find any Lagrangian. Instead, the circuit's classical or quantum Hamiltonian is obtained from the energy of the reactive (i.e., conservative) circuit elements by means of transformations complementary to Hamilton's equations. Dissipation (loss) is accounted for by using the Rayleigh dissipation function and defining generalized Poisson brackets--Poisson-Rayleigh brackets. Fluctuations (noise) are added as voltage or current sources characterized by bath modes. Non-conservative elements (e.g., noisy resistors) are included ab initio using the incidence-matrix method, without needing to treat them as separate elements. Finally, we show that in order to form a complete set of canonical coordinates, auxiliary (which could be parasitic in certain cases) circuit elements are required to find the Hamiltonian of circuits with an incomplete set of generalized velocities. In particular, we introduce two methods to eliminate the coordinates associated with the auxiliary elements by either Hamiltonian reduction or equation-of-motion reduction. We use auxiliary circuit elements to treat a maximally nonlinear circuit comprising simultaneously both a Josephson junction and a quantum phase slip.