论文标题

使用深厚的强化学习的高速公路决策策略

Decision-making Strategy on Highway for Autonomous Vehicles using Deep Reinforcement Learning

论文作者

Liao, Jiangdong, Liu, Teng, Tang, Xiaolin, Mu, Xingyu, Huang, Bing, Cao, Dongpu

论文摘要

自动驾驶是一项有前途的技术,可以减少交通事故并提高驾驶效率。在这项工作中,为自动驾驶汽车建立了深入的强化学习(DRL)的决策政策,以解决高速公路上的超车行为。首先,建立了高速公路驾驶环境,其中自我车辆的目标是通过高效且安全的机动穿过周围的车辆。提出了一个分层控制框架来控制这些车辆,这表明高层管理驾驶决策,而低级关心车辆速度和加速度的监督。然后,使用指定的DRL方法进行Dueling Deep Q-Network(DDQN)算法用于得出高速公路决策策略。讨论并比较了深Q网络和DDQN算法的详尽计算程序。最后,进行了一系列估计模拟实验,以评估拟议的公路决策政策的有效性。拟议框架在收敛速度和控制绩效方面的优点被照亮。仿真结果表明,基于DDQN的超车政策可以有效,安全地完成高速公路驾驶任务。

Autonomous driving is a promising technology to reduce traffic accidents and improve driving efficiency. In this work, a deep reinforcement learning (DRL)-enabled decision-making policy is constructed for autonomous vehicles to address the overtaking behaviors on the highway. First, a highway driving environment is founded, wherein the ego vehicle aims to pass through the surrounding vehicles with an efficient and safe maneuver. A hierarchical control framework is presented to control these vehicles, which indicates the upper-level manages the driving decisions, and the lower-level cares about the supervision of vehicle speed and acceleration. Then, the particular DRL method named dueling deep Q-network (DDQN) algorithm is applied to derive the highway decision-making strategy. The exhaustive calculative procedures of deep Q-network and DDQN algorithms are discussed and compared. Finally, a series of estimation simulation experiments are conducted to evaluate the effectiveness of the proposed highway decision-making policy. The advantages of the proposed framework in convergence rate and control performance are illuminated. Simulation results reveal that the DDQN-based overtaking policy could accomplish highway driving tasks efficiently and safely.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源