论文标题

使用ETC图像的隐私保护机器学习方案

A Privacy-Preserving Machine Learning Scheme Using EtC Images

论文作者

Kawamura, Ayana, Kinoshita, Yuma, Nakachi, Takayuki, Shiota, Sayaka, Kiya, Hitoshi

论文摘要

我们建议使用加密 - 压缩(ETC)图像的隐私机器学习方案,其中ETC图像是通过使用针对JPEG压缩的ETC系统提出的基于块的加密方法来加密图像的。在本文中,首先讨论了ETC图像的新型属性,尽管ETC已被证明是可压缩的。新型属性使我们能够将ETC图像直接应用于非特定化计算加密数据的机器学习算法。此外,提出的方案被证明在某些典型的机器学习算法的性能中没有降解,包括使用Z分数归一化的支持向量机算法和内核技巧和随机森林。进行了许多面部识别实验,以确认拟议方案的有效性。

We propose a privacy-preserving machine learning scheme with encryption-then-compression (EtC) images, where EtC images are images encrypted by using a block-based encryption method proposed for EtC systems with JPEG compression. In this paper, a novel property of EtC images is first discussed, although EtC ones was already shown to be compressible as a property. The novel property allows us to directly apply EtC images to machine learning algorithms non-specialized for computing encrypted data. In addition, the proposed scheme is demonstrated to provide no degradation in the performance of some typical machine learning algorithms including the support vector machine algorithm with kernel trick and random forests under the use of z-score normalization. A number of facial recognition experiments with are carried out to confirm the effectiveness of the proposed scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源