论文标题

EPNET:带有图像语义的增强点功能,用于3D对象检测

EPNet: Enhancing Point Features with Image Semantics for 3D Object Detection

论文作者

Huang, Tengteng, Liu, Zhe, Chen, Xiwu, Bai, Xiang

论文摘要

在本文中,我们旨在解决3D检测任务中的两个关键问题,包括对多个传感器的开发〜(即Lidar Point Cloud和Camera Image),以及本地化和分类置信度之间的不一致性。为此,我们提出了一个新颖的融合模块,以以点上的方式以语义图像特征增强点特征,而无需任何图像注释。此外,采用一致性执行损失来明确鼓励本地化和分类信心的一致性。我们设计了一个名为EPNET的端到端可学习框架,以集成这两个组件。 Kitti和Sun-RGBD数据集的广泛实验证明了EPNET优于最新方法。代码和模型可在:\ url {https://github.com/happinesslz/epnet}中获得。

In this paper, we aim at addressing two critical issues in the 3D detection task, including the exploitation of multiple sensors~(namely LiDAR point cloud and camera image), as well as the inconsistency between the localization and classification confidence. To this end, we propose a novel fusion module to enhance the point features with semantic image features in a point-wise manner without any image annotations. Besides, a consistency enforcing loss is employed to explicitly encourage the consistency of both the localization and classification confidence. We design an end-to-end learnable framework named EPNet to integrate these two components. Extensive experiments on the KITTI and SUN-RGBD datasets demonstrate the superiority of EPNet over the state-of-the-art methods. Codes and models are available at: \url{https://github.com/happinesslz/EPNet}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源