论文标题

关于多项式微分方程的二次化的复杂性

On the Complexity of Quadratization for Polynomial Differential Equations

论文作者

Hemery, Mathieu, Fages, François, Soliman, Sylvain

论文摘要

化学反应网络(CRN)是用于推理分子相互作用网络动力学的化学形式主义。在通过普通微分方程的解释中,CRN提供了模拟计算的图形完整模型,因为可以通过有限数量的分子物种来计算具有连续CRN的分子种类的任何可计算函数,从而在任意精确的精确性中近似于其组成部分中该功能的结果。结果证明是基于Bournez等人的先前结果。关于多项式初始条件(PIVP)的多种单数普通微分方程的图灵完整性。它使用两个非阴性变量对实际变量进行编码,以使其浓度进行浓度,并将其转换为等效二次PIVP(即最多具有2度),以将自己限制在大多数双分子反应中。在本文中,我们研究了二次转化的理论和实际复杂性。我们表明,将变量数量(即分子物种)或PIVP二次转化中的单一反应数(即基本反应)的数量最小化的问题都是NP-HARD。我们在Max-Sat中介绍了这些问题的编码,并在CRN设计问题启发的二次化问题的基准上显示了该算法的实际复杂性。

Chemical reaction networks (CRNs) are a standard formalism used in chemistry and biology to reason about the dynamics of molecular interaction networks. In their interpretation by ordinary differential equations, CRNs provide a Turing-complete model of analog computattion, in the sense that any computable function over the reals can be computed by a finite number of molecular species with a continuous CRN which approximates the result of that function in one of its components in arbitrary precision. The proof of that result is based on a previous result of Bournez et al. on the Turing-completeness of polyno-mial ordinary differential equations with polynomial initial conditions (PIVP). It uses an encoding of real variables by two non-negative variables for concentrations, and a transformation to an equivalent quadratic PIVP (i.e. with degrees at most 2) for restricting ourselves to at most bimolecular reactions. In this paper, we study the theoretical and practical complexities of the quadratic transformation. We show that both problems of minimizing either the number of variables (i.e., molecular species) or the number of monomials (i.e. elementary reactions) in a quadratic transformation of a PIVP are NP-hard. We present an encoding of those problems in MAX-SAT and show the practical complexity of this algorithm on a benchmark of quadratization problems inspired from CRN design problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源