论文标题

值得信赖的机器学习技术:社会技术环境中的调查

Technologies for Trustworthy Machine Learning: A Survey in a Socio-Technical Context

论文作者

Toreini, Ehsan, Aitken, Mhairi, Coopamootoo, Kovila P. L., Elliott, Karen, Zelaya, Vladimiro Gonzalez, Missier, Paolo, Ng, Magdalene, van Moorsel, Aad

论文摘要

对基于AI的服务和系统的社会影响的担忧鼓励了政府和世界其他组织提出AI政策框架,以解决公平,问责制,透明度和相关主题。为了实现这些框架的目标,构建机器学习系统的数据和软件工程师需要有关各种相关支持工具和技术的知识。在本文中,我们提供了支持建立可信赖的机器学习系统的技术的概述,即,其属性证明人们对它们的信任是合理的。我们认为,四类系统属性有助于实现政策目标,即公平性,解释性,可调性和安全与安全(FEAS)。我们讨论如何在机器学习生命周期的所有阶段(从数据收集到运行时模型推论)中考虑这些属性。结果,我们在本文中调查了所有四个群体特性的主要技术,以针对以数据为中心以及以模型为中心的机器学习系统生命周期。我们以确定开放研究问题的确定结论,特别关注可信赖的机器学习技术及其对个人和社会的影响之间的联系。

Concerns about the societal impact of AI-based services and systems has encouraged governments and other organisations around the world to propose AI policy frameworks to address fairness, accountability, transparency and related topics. To achieve the objectives of these frameworks, the data and software engineers who build machine-learning systems require knowledge about a variety of relevant supporting tools and techniques. In this paper we provide an overview of technologies that support building trustworthy machine learning systems, i.e., systems whose properties justify that people place trust in them. We argue that four categories of system properties are instrumental in achieving the policy objectives, namely fairness, explainability, auditability and safety & security (FEAS). We discuss how these properties need to be considered across all stages of the machine learning life cycle, from data collection through run-time model inference. As a consequence, we survey in this paper the main technologies with respect to all four of the FEAS properties, for data-centric as well as model-centric stages of the machine learning system life cycle. We conclude with an identification of open research problems, with a particular focus on the connection between trustworthy machine learning technologies and their implications for individuals and society.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源