论文标题
始终在674UW @ 4GOP/S错误弹性二进制神经网络上具有侵略性SRAM电压缩放在22nm IoT端节点上
Always-On 674uW @ 4GOP/s Error Resilient Binary Neural Networks with Aggressive SRAM Voltage Scaling on a 22nm IoT End-Node
论文作者
论文摘要
二进制神经网络(BNN)已被证明对随机的比特噪声具有鲁棒性,从而使攻击性电压缩放具有吸引力,作为逻辑和SRAM的省电技术。在这项工作中,我们介绍了第一个完全可编程的物联网端节点系统芯片(SOC),能够在超低电压下执行软件定义的,硬件加速的BNN。我们的SOC利用了混合记忆方案,其中可靠的标准细胞内存可以补充可误差的SRAM,以将关键数据安全地存储在侵略性的电压缩放下。在22nm FDX技术中的原型上,我们证明了逻辑和SRAM电压均可降至0.5vwith Out对CIFAR-10数据集训练的BNN的任何准确性罚款,从而提高了能源效率2.2x W.R.R.T.名义条件。此外,我们表明电源电压可以降至0.42V(名义的50%),同时保持超过99%的名义准确性(较低的错误率〜1/1000)。 In this operating point, our prototype performs 4Gop/s (15.4Inference/s on the CIFAR-10 dataset) by computing up to 13binary ops per pJ, achieving 22.8 Inference/s/mW while keeping within a peak power envelope of 674uW - low enough to enable always-on operation in ultra-low power smart cameras, long-lifetime environmental sensors, and insect-sized pico-drones.
Binary Neural Networks (BNNs) have been shown to be robust to random bit-level noise, making aggressive voltage scaling attractive as a power-saving technique for both logic and SRAMs. In this work, we introduce the first fully programmable IoT end-node system-on-chip (SoC) capable of executing software-defined, hardware-accelerated BNNs at ultra-low voltage. Our SoC exploits a hybrid memory scheme where error-vulnerable SRAMs are complemented by reliable standard-cell memories to safely store critical data under aggressive voltage scaling. On a prototype in 22nm FDX technology, we demonstrate that both the logic and SRAM voltage can be dropped to 0.5Vwithout any accuracy penalty on a BNN trained for the CIFAR-10 dataset, improving energy efficiency by 2.2X w.r.t. nominal conditions. Furthermore, we show that the supply voltage can be dropped to 0.42V (50% of nominal) while keeping more than99% of the nominal accuracy (with a bit error rate ~1/1000). In this operating point, our prototype performs 4Gop/s (15.4Inference/s on the CIFAR-10 dataset) by computing up to 13binary ops per pJ, achieving 22.8 Inference/s/mW while keeping within a peak power envelope of 674uW - low enough to enable always-on operation in ultra-low power smart cameras, long-lifetime environmental sensors, and insect-sized pico-drones.