论文标题

分散数据和一般重量功能的稳定高阶正规规则

Stable High Order Quadrature Rules for Scattered Data and General Weight Functions

论文作者

Glaubitz, Jan

论文摘要

在数值分析和工程科学领域均遇到数值集成。到现在为止,已知各种有效,准确的正交规则。例如,高斯型正交规则。但是,在许多应用中,可能是不切实际的 - 甚至不是不可能的 - 甚至不是不可能的 - 符合已知正交规则的数据。通常,实验测量是在时空或时间上以等距甚至散射点进行的。在这项工作中,我们提出了实验数据的稳定高阶段规则,该规则可以准确处理一般的重量功能。

Numerical integration is encountered in all fields of numerical analysis and the engineering sciences. By now, various efficient and accurate quadrature rules are known; for instance, Gauss-type quadrature rules. In many applications, however, it might be impractical---if not even impossible---to obtain data to fit known quadrature rules. Often, experimental measurements are performed at equidistant or even scattered points in space or time. In this work, we propose stable high order quadrature rules for experimental data, which can accurately handle general weight functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源