论文标题
关于重力产生的暗物质的熵的起源:纠缠熵
On the origin of entropy of gravitationally produced dark matter: the entanglement entropy
论文作者
论文摘要
我们研究了暗物质颗粒重力产生的熵的出现,从通货膨胀到辐射统治(RD),极光标量最小与重力和更重的费米子的出现。在通货膨胀期间,初始条件对应于其束davies真空中的暗物质场。 “ OUT”状态是相关的粒子 - 抗粒子对,并且在两种情况下都发现了分布函数。在绝热状态下,密度矩阵具有快速的分解,通过在“ Out”粒子状态下从干扰效应中脱离效应,有效地将其降低到具有同伴的von Neumann熵的对角线形式。我们表明,这正是通过追踪相关对的一个成员而获得的纠缠熵。值得注意的是,对于两个统计数据,就分布函数而言,纠缠熵与量子动力学熵相似,值得注意的差异来自对的相关性。能量动量张量的熵和动流体形式均来自密度矩阵的偏聚。对于Ultra Light标量暗物质,分布功能在低动量$ \ Propto 1/k^3 $处达到峰值,并且特定的熵为$ \ ll 1 $。这是\ emph {凝结相位}的标志,但具有消失的场期望值。对于费米文物,分布函数几乎是热的,并且特定的熵为$ \ Mathcal {o}(1)$典型的热物种。我们认为,纠缠熵的功能形式非常笼统,适用于替代生产机制,例如重新加热期间参数放大。
We study the emergence of entropy in gravitational production of dark matter particles, ultra light scalars minimally coupled to gravity and heavier fermions, from inflation to radiation domination (RD). Initial conditions correspond to dark matter fields in their Bunch-Davies vacua during inflation. The "out" states are correlated particle-antiparticle pairs, and the distribution function is found in both cases. In the adiabatic regime the density matrix features rapid decoherence by dephasing from interference effects in the basis of "out" particle states, effectively reducing it to a diagonal form with a concomitant von Neumann entropy. We show that it is exactly the entanglement entropy obtained by tracing over one member of the correlated pairs. Remarkably, for both statistics the entanglement entropy is similar to the quantum kinetic entropy in terms of the distribution function with noteworthy differences stemming from pair correlations. The entropy and the kinetic fluid form of the energy momentum tensor all originate from decoherence of the density matrix. For ultra light scalar dark matter, the distribution function peaks at low momentum $\propto 1/k^3$ and the specific entropy is $\ll 1$. This is a hallmark of a \emph{condensed phase} but with vanishing field expectation value. For fermionic dark matter the distribution function is nearly thermal and the specific entropy is $\mathcal{O}(1)$ typical of a thermal species. We argue that the functional form of the entanglement entropy is quite general and applies to alternative production mechanisms such as parametric amplification during reheating.