论文标题

学会用嘈杂的摄像头观察玩杯和球

Learning to Play Cup-and-Ball with Noisy Camera Observations

论文作者

Bujarbaruah, Monimoy, Zheng, Tony, Shetty, Akhil, Sehr, Martin, Borrelli, Francesco

论文摘要

玩杯和球游戏是机器人研究的一项有趣的任务,因为它提取了重要的问题特征,包括系统非线性,接触力和精确定位作为终端目标。在本文中,我们为杯球游戏提供了基于学习模型的控制策略,其中通用机器人UR5E操纵器臂学会了在肯达山上的一个杯子中捕捉球。我们的控制问题分为两个子任务,即$(i)$以受约束的运动将球摇摆,$(ii)$捕获自由落体的球。摇摆轨迹是离线计算的,并将其置于空间上。随后,在球自由下落期间,在线解决了凸优化问题,以控制操纵器并捕获球。控制器利用来自Intel Realsense D435深度摄像机的球的嘈杂位置反馈。我们提出了一个新颖的迭代框架,该框架用于学习迭代的摄像机噪声分布的支持,以更新控制策略。用用户指定的推出数量,通过固定策略进行捕获的概率是经验计算的。我们的设计确保捕获的可能性增加了极限,因为学习的支撑物靠近相机噪声分布的真正支持。高保真的穆乔科模拟和初步实验结果支持我们的理论分析。

Playing the cup-and-ball game is an intriguing task for robotics research since it abstracts important problem characteristics including system nonlinearity, contact forces and precise positioning as terminal goal. In this paper, we present a learning model based control strategy for the cup-and-ball game, where a Universal Robots UR5e manipulator arm learns to catch a ball in one of the cups on a Kendama. Our control problem is divided into two sub-tasks, namely $(i)$ swinging the ball up in a constrained motion, and $(ii)$ catching the free-falling ball. The swing-up trajectory is computed offline, and applied in open-loop to the arm. Subsequently, a convex optimization problem is solved online during the ball's free-fall to control the manipulator and catch the ball. The controller utilizes noisy position feedback of the ball from an Intel RealSense D435 depth camera. We propose a novel iterative framework, where data is used to learn the support of the camera noise distribution iteratively in order to update the control policy. The probability of a catch with a fixed policy is computed empirically with a user specified number of roll-outs. Our design guarantees that probability of the catch increases in the limit, as the learned support nears the true support of the camera noise distribution. High-fidelity Mujoco simulations and preliminary experimental results support our theoretical analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源