论文标题

超长时间序列的分布式Arima模型

Distributed ARIMA Models for Ultra-long Time Series

论文作者

Wang, Xiaoqian, Kang, Yanfei, Hyndman, Rob J, Li, Feng

论文摘要

为超长时间序列提供预测在各种活动中起着至关重要的作用,例如投资决策,工业生产安排和农场管理。本文开发了一个新颖的分布式预测框架,通过使用行业标准的MapReduce框架来应对与预测超长时间序列相关的挑战。提出的模型组合方法通过结合从工人节点传递的时间序列模型的本地估计器并最大程度地降低全球损失函数来促进分布式时间序列序列。这样,我们仅在超长时间序列的数据生成过程(DGP)上保持不变,而是仅在较短时间段的子研究的DGP上做出假设。我们使用实际数据应用程序以及数值模拟研究了提出方法的性能。与将整个数据与Arima模型直接拟合在一起相比,我们的方法在点预测和预测间隔中都提高了预测准确性和计算效率,尤其是对于更长的预测范围。此外,我们探讨了一些可能影响我们方法预测性能的潜在因素。

Providing forecasts for ultra-long time series plays a vital role in various activities, such as investment decisions, industrial production arrangements, and farm management. This paper develops a novel distributed forecasting framework to tackle challenges associated with forecasting ultra-long time series by using the industry-standard MapReduce framework. The proposed model combination approach facilitates distributed time series forecasting by combining the local estimators of time series models delivered from worker nodes and minimizing a global loss function. In this way, instead of unrealistically assuming the data generating process (DGP) of an ultra-long time series stays invariant, we make assumptions only on the DGP of subseries spanning shorter time periods. We investigate the performance of the proposed approach with AutoRegressive Integrated Moving Average (ARIMA) models using the real data application as well as numerical simulations. Compared to directly fitting the whole data with ARIMA models, our approach results in improved forecasting accuracy and computational efficiency both in point forecasts and prediction intervals, especially for longer forecast horizons. Moreover, we explore some potential factors that may affect the forecasting performance of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源