论文标题
在$ u(λ)$类的某些属性上
On certain properties of the class $U(λ)$
论文作者
论文摘要
令$ {\ mathcal a} $为单位磁盘$ {\ mathbb d}中的函数分析类别:= \ {z \ in {\ mathbb c}:\,| z | <1 \} $并归一化,使得$ f(z)= z+a_2z^2+a_3z^3+\ cdots $。在本文中,我们研究了类$ \ Mathcal {u}(λ)$,$ 0<λ\ leq1 $,由$ {\ Mathcal {a}} $组成的函数$ f $,满足\ [\ left | \ [\ left | \ lest(\ frac {z}} <λ\ quad(z \ in {\ mathbb d})。
Let ${\mathcal A}$ be the class of functions analytic in the unit disk ${\mathbb D} := \{ z\in {\mathbb C}:\, |z| < 1 \}$ and normalized such that $f(z)=z+a_2z^2+a_3z^3+\cdots$. In this paper we study the class $\mathcal{U}(λ)$, $0<λ\leq1$, consisting of functions $f$ from ${\mathcal{A}}$ satisfying \[\left|\left(\frac{z}{f(z)}\right)^2f'(z)-1\right| < λ\quad (z\in {\mathbb D}).\] and give results regarding the Zalcman Conjecture, the generalised Zalcman conjecture, the Krushkal inequality and the second and third order Hankel determinant.