论文标题
一般性曲面的单肌
Monodromy of general hypersurfaces
论文作者
论文摘要
令$ x $为$ \ mathbb {p}^{n+1} $的通用复杂的投影hypersurface,$ d> 1 $。如果从$ p $的$ x $投影的单体组对对称群体是同构的,则点$ p $不在$ x $中称为统一。我们证明,$ \ mathbb {p}^{n+1} $中的所有点对于$ x $都是统一的,它概括为Cukierman在一般平面曲线上的结果。
Let $X$ be a general complex projective hypersurface in $\mathbb{P}^{n+1}$ of degree $d>1$. A point $P$ not in $X$ is called uniform if the monodromy group of the projection of $X$ from $P$ is isomorphic to the symmetric group. We prove that all the points in $\mathbb{P}^{n+1}$ are uniform for $X$, generalizing a result of Cukierman on general plane curves.