论文标题

一般性曲面的单肌

Monodromy of general hypersurfaces

论文作者

Cifani, Maria Gioia

论文摘要

令$ x $为$ \ mathbb {p}^{n+1} $的通用复杂的投影hypersurface,$ d> 1 $。如果从$ p $的$ x $投影的单体组对对称群体是同构的,则点$ p $不在$ x $中称为统一。我们证明,$ \ mathbb {p}^{n+1} $中的所有点对于$ x $都是统一的,它概括为Cukierman在一般平面曲线上的结果。

Let $X$ be a general complex projective hypersurface in $\mathbb{P}^{n+1}$ of degree $d>1$. A point $P$ not in $X$ is called uniform if the monodromy group of the projection of $X$ from $P$ is isomorphic to the symmetric group. We prove that all the points in $\mathbb{P}^{n+1}$ are uniform for $X$, generalizing a result of Cukierman on general plane curves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源