论文标题

生态模型中的贝叶斯非参数检测异质性

Bayesian Non-Parametric Detection Heterogeneity in Ecological Models

论文作者

Turek, Daniel, Wehrhahn, Claudia, Gimenez, Olivier

论文摘要

检测异质性是生态数据所固有的,这是由各种地形或天气条件,采样不一致或个人本身异质性等因素引起的。将其他协变量纳入统计模型是解决异质性的一种方法,但不能保证任何一组可测量的协变量将充分解决异质性,并且已经证明,未建立的异质性的存在可以在产生的推断中产生偏见。解决异质性的其他方法包括使用随机效应或同质亚组的有限混合物。在这里,我们提出了一种非参数方法,用于建模用于贝叶斯分层框架的检测异质性。我们采用了Dirichlet工艺混合物,该过程允许弹性数量的人群亚组,而无需像有限的混合物中预先指定该数量的亚组。我们描述了这种非参数方法,然后考虑在两个共同的生态基序中建模检测异质性的使用:捕获重心和占用模型。对于每个人,我们都考虑均匀模型,有限混合模型和非参数方法。我们使用两项模拟研究比较了这些方法,并将非参数方法视为解决不同程度异质性的最可靠方法。我们还提供了两个真实数据示例,并比较每种建模方法产生的推论。分析是使用\ texttt {nimble}的\ texttt {r}的\ texttt {nimble}软件包进行的,该软件包为贝叶斯非参数模型提供了设施。

Detection heterogeneity is inherent to ecological data, arising from factors such as varied terrain or weather conditions, inconsistent sampling effort, or heterogeneity of individuals themselves. Incorporating additional covariates into a statistical model is one approach for addressing heterogeneity, but is no guarantee that any set of measurable covariates will adequately address the heterogeneity, and the presence of unmodelled heterogeneity has been shown to produce biases in the resulting inferences. Other approaches for addressing heterogeneity include the use of random effects, or finite mixtures of homogeneous subgroups. Here, we present a non-parametric approach for modelling detection heterogeneity for use in a Bayesian hierarchical framework. We employ a Dirichlet process mixture which allows a flexible number of population subgroups without the need to pre-specify this number of subgroups as in a finite mixture. We describe this non-parametric approach, then consider its use for modelling detection heterogeneity in two common ecological motifs: capture-recapture and occupancy modelling. For each, we consider a homogeneous model, finite mixture models, and the non-parametric approach. We compare these approaches using two simulation studies, and observe the non-parametric approach as the most reliable method for addressing varying degrees of heterogeneity. We also present two real-data examples, and compare the inferences resulting from each modelling approach. Analyses are carried out using the \texttt{nimble} package for \texttt{R}, which provides facilities for Bayesian non-parametric models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源