论文标题
从源到初始数据再返回:关于欧几里得广告/CFT中的散装奇异性
From sources to initial data and back again: on bulk singularities in Euclidean AdS/CFT
论文作者
论文摘要
在ADS/CFT中准备状态的一种常见方法是,为单个轨道运算符打开来源的欧几里得路径积分。这些状态可以被解释为与洛伦兹(Lorentzian)在库奇(Cauchy)切片上的初始数据相关的大量量子理论的连贯状态。在本文中,我们讨论了以这种方式获得任意初始数据的程度。我们表明,初始数据必须进行分析并定义可以通过施加批量规律性来制备的子集。扭转局面,我们表明,对于通用分析初始数据,相应的欧几里得部分包含来自批量中三角洲函数源的奇异性。我们提出将这些奇异性解释为微观理论中的非扰动对象。
A common method to prepare states in AdS/CFT is to perform the Euclidean path integral with sources turned on for single-trace operators. These states can be interpreted as coherent states of the bulk quantum theory associated to Lorentzian initial data on a Cauchy slice. In this paper, we discuss the extent to which arbitrary initial data can be obtained in this way. We show that the initial data must be analytic and define the subset of it that can be prepared by imposing bulk regularity. Turning this around, we show that for generic analytic initial data the corresponding Euclidean section contains singularities coming from delta function sources in the bulk. We propose an interpretation of these singularities as non-perturbative objects in the microscopic theory.