论文标题

合成图像的生成层次特征

Generative Hierarchical Features from Synthesizing Images

论文作者

Xu, Yinghao, Shen, Yujun, Zhu, Jiapeng, Yang, Ceyuan, Zhou, Bolei

论文摘要

生成对抗网络(GAN)最近通过学习观察到的数据的基本分布来具有高级图像合成。但是,从解决图像生成任务中学到的功能如何适用于其他视觉任务,仍然很少探索。在这项工作中,我们表明学习合成图像可以带来显着的层次视觉特征,这些特征可在广泛的应用中推广。具体而言,我们将预训练的样式Gener Generator视为一种学习的损耗函数,并利用其层的表示来训练新型的层次结构编码器。我们的编码器产生的视觉特征,称为生成分层特征(GH-FEAT),对生成性和判别任务具有强大的可传递性,包括图像编辑,图像和谐,图像分类,面部验证,地标检测和布局预测。广泛的定性和定量实验结果证明了GH-FEAT的吸引力。

Generative Adversarial Networks (GANs) have recently advanced image synthesis by learning the underlying distribution of the observed data. However, how the features learned from solving the task of image generation are applicable to other vision tasks remains seldom explored. In this work, we show that learning to synthesize images can bring remarkable hierarchical visual features that are generalizable across a wide range of applications. Specifically, we consider the pre-trained StyleGAN generator as a learned loss function and utilize its layer-wise representation to train a novel hierarchical encoder. The visual feature produced by our encoder, termed as Generative Hierarchical Feature (GH-Feat), has strong transferability to both generative and discriminative tasks, including image editing, image harmonization, image classification, face verification, landmark detection, and layout prediction. Extensive qualitative and quantitative experimental results demonstrate the appealing performance of GH-Feat.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源