论文标题
在轨道磁化二维的轨道磁化上的疾病数值研究
Numerical Study of Disorder on the Orbital Magnetization in Two Dimensions
论文作者
论文摘要
现代的轨道磁化理论(OM)是通过使用Wannier函数方法开发的,该方法具有与浆果相似的形式主义。在本手稿中,我们通过在二维上使用haldane模型上使用此方法对OM下的OM命运进行了数值研究,该方法可以在一半填充的正常绝缘子或Chern绝缘子之间调节。在两种情况下,疾病对OM的影响的影响都是模拟的。在弱小的疾病制度和拓扑琐碎的情况下观察到能量重归其化的转移,这是通过自洽的t-matrix近似来预测的。除此之外,还可以看到另外两个现象。一个是带轨道磁化的带定位趋势。另一个是拓扑性手性状态的显着贡献,该状态是由非零的Chern数量或综合浆果曲率的大价值产生的。如果费米能量固定在清洁系统的间隙中心,则有| M |的增强。在中间疾病中,对于正常和Chern绝缘子的病例,这可能归因于该疾病在定位之前诱导的拓扑金属状态。
The modern theory of orbital magnetization (OM) was developed by using Wannier function method, which has a formalism similar with the Berry phase. In this manuscript, we perform a numerical study on the fate of the OM under disorder, by using this method on the Haldane model in two dimensions, which can be tuned between a normal insulator or a Chern insulator at half filling. The effects of increasing disorder on OM for both cases are simulated. Energy renormalization shifts are observed in the weak disorder regime and topologically trivial case, which was predicted by a self-consistent T-matrix approximation. Besides this, two other phenomena can be seen. One is the localization trend of the band orbital magnetization. The other is the remarkable contribution from topological chiral states arising from nonzero Chern number or large value of integrated Berry curvature. If the fermi energy is fixed at the gap center of the clean system, there is an enhancement of |M| at the intermediate disorder, for both cases of normal and Chern insulators, which can be attributed to the disorder induced topological metal state before localization.