论文标题

具有兼容性特征的3D对应分组

3D Correspondence Grouping with Compatibility Features

论文作者

Yang, Jiaqi, Chen, Jiahao, Huang, Zhiqiang, Quan, Siwen, Zhang, Yanning, Cao, Zhiguo

论文摘要

我们为3D对应分组提供了一种简单而有效的方法。目的是通过将局部几何描述符匹配到嵌入式和异常值中,将获得的初始对应准确分类。尽管对应关系的空间分布是不规则的,但预计嵌入式在几何上彼此兼容。基于这样的观察,我们提出了一个新的3D对应关系表示形式,称为兼容性特征(CF),以描述异常值中的嵌入式和不一致之处的一致性。 CF由候选对应的候选者的顶级兼容得分组成,这些分数纯粹依赖于稳健和旋转不变的几何约束。然后,我们将分组问题作为CF特征的分类问题提出,该问题是通过简单的多层求解(MLP)网络完成的。与四个基准的九种最先进方法的比较表明:1)CF是独特的,健壮的和旋转不变的; 2)我们基于CF的方法实现了最佳的整体性能并具有良好的概括能力。

We present a simple yet effective method for 3D correspondence grouping. The objective is to accurately classify initial correspondences obtained by matching local geometric descriptors into inliers and outliers. Although the spatial distribution of correspondences is irregular, inliers are expected to be geometrically compatible with each other. Based on such observation, we propose a novel representation for 3D correspondences, dubbed compatibility feature (CF), to describe the consistencies within inliers and inconsistencies within outliers. CF consists of top-ranked compatibility scores of a candidate to other correspondences, which purely relies on robust and rotation-invariant geometric constraints. We then formulate the grouping problem as a classification problem for CF features, which is accomplished via a simple multilayer perceptron (MLP) network. Comparisons with nine state-of-the-art methods on four benchmarks demonstrate that: 1) CF is distinctive, robust, and rotation-invariant; 2) our CF-based method achieves the best overall performance and holds good generalization ability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源