论文标题

指导性的多分支学习系统,用于与声音分离的声音事件检测

Guided multi-branch learning systems for sound event detection with sound separation

论文作者

Huang, Yuxin, Lin, Liwei, Ma, Shuo, Wang, Xiangdong, Liu, Hong, Qian, Yueliang, Liu, Min, Ouch, Kazushige

论文摘要

在本文中,我们详细描述了Dcase 2020 Task 4的系统。该系统基于Dcase 2019 Task 4的第1个系统,该系统采用了弱监督的框架,该框架具有基于注意力的嵌入式层次层次池模块和半抑制的学习方法,名为Guided Learning。今年,我们将多分支学习(MBL)纳入原始系统,以进一步提高其性能。 MBL使用不同的分支机构具有不同的合并策略(包括实例级别和嵌入式级策略)和不同的合并模块(包括注意池,全局最大池或全球平均池模块),它们共享模型的相同特征编码器。因此,要追求不同目的并关注数据不同特征的多个分支可以帮助功能编码器更好地模型,并避免过度拟合。为了更好地利用由多任务学习的启发,我们还采用了声音事件检测分支。为了将声音分离(SS)与声音事件检测(SED)相结合,我们将SED系统的结果与SS-SED系统融合在一起,这些系统通过SS系统使用分离的声音输出进行了训练。实验结果证明,MBL可以改善模型性能,并且使用SS具有改善SED集成系统性能的巨大潜力。

In this paper, we describe in detail our systems for DCASE 2020 Task 4. The systems are based on the 1st-place system of DCASE 2019 Task 4, which adopts weakly-supervised framework with an attention-based embedding-level pooling module and a semi-supervised learning approach named guided learning. This year, we incorporate multi-branch learning (MBL) into the original system to further improve its performance. MBL uses different branches with different pooling strategies (including instance-level and embedding-level strategies) and different pooling modules (including attention pooling, global max pooling or global average pooling modules), which share the same feature encoder of the model. Therefore, multiple branches pursuing different purposes and focusing on different characteristics of the data can help the feature encoder model the feature space better and avoid over-fitting. To better exploit the strongly-labeled synthetic data, inspired by multi-task learning, we also employ a sound event detection branch. To combine sound separation (SS) with sound event detection (SED), we fuse the results of SED systems with SS-SED systems which are trained using separated sound output by an SS system. The experimental results prove that MBL can improve the model performance and using SS has great potential to improve the performance of SED ensemble system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源