论文标题

使用共同信息矩阵的预测可解释的故障检测

Interpretable Fault Detection using Projections of Mutual Information Matrix

论文作者

Lv, Feiya, Yu, Shujian, Wen, Chenglin, Principe, Jose C.

论文摘要

本文提出了一种基于故障检测的基于新型的互信息(MI)矩阵的方法。给定$ m $维的故障流程,MI矩阵是$ M \ times m $矩阵,其中$(i,j)$ - THENTER可以测量$ i $ th dimension和$ j $ -th dimension变量之间的MI值。我们介绍了最近提出的基于矩阵的Rényi的$α$ -Entropy功能,以估计MI矩阵每个条目中的MI值。新的估计器避免了密度估计,并且它在(归一化)对称正定(SPD)矩阵的特征性上运行,这使其非常适合工业过程。我们结合了从MI矩阵提取的转换组件(TC)的不同统计量,以构成检测指数,并得出一个简单的相似性索引,以监视连续窗口中基础过程的特征的变化。我们将总体方法论“共同信息矩阵的投影”(PMIM)称为。对合成数据和基准田纳西州伊士曼过程的实验都证明了PMIM在识别导致故障的根变量方面的解释性,及其在检测到错误的故障检测率(FDR)和最低错误警报率(远)方面检测故障发生的优势。 PMIM的优势对超参数敏感也不太敏感。 PMIM的优势对超参数敏感也不太敏感。 PMIM代码可从https://github.com/sjyucnel/fault_detection_pmim获得

This paper presents a novel mutual information (MI) matrix based method for fault detection. Given a $m$-dimensional fault process, the MI matrix is a $m \times m$ matrix in which the $(i,j)$-th entry measures the MI values between the $i$-th dimension and the $j$-th dimension variables. We introduce the recently proposed matrix-based Rényi's $α$-entropy functional to estimate MI values in each entry of the MI matrix. The new estimator avoids density estimation and it operates on the eigenspectrum of a (normalized) symmetric positive definite (SPD) matrix, which makes it well suited for industrial process. We combine different orders of statistics of the transformed components (TCs) extracted from the MI matrix to constitute the detection index, and derive a simple similarity index to monitor the changes of characteristics of the underlying process in consecutive windows. We term the overall methodology "projections of mutual information matrix" (PMIM). Experiments on both synthetic data and the benchmark Tennessee Eastman process demonstrate the interpretability of PMIM in identifying the root variables that cause the faults, and its superiority in detecting the occurrence of faults in terms of the improved fault detection rate (FDR) and the lowest false alarm rate (FAR). The advantages of PMIM is also less sensitive to hyper-parameters. The advantages of PMIM is also less sensitive to hyper-parameters. Code of PMIM is available at https://github.com/SJYuCNEL/Fault_detection_PMIM

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源