论文标题
深层预设:将照片与颜色样式转移混合和修饰
Deep Preset: Blending and Retouching Photos with Color Style Transfer
论文作者
论文摘要
最终用户在没有摄影知识的情况下,希望美化他们的照片具有类似的颜色样式,就像搭配良好的参考。但是,在最近的图像样式转移工作中的样式的定义是不合适的。由于将确切的颜色传输到错误的目的地,它们通常会综合不良结果。在诸如肖像之类的敏感情况下,情况变得更糟。在这项工作中,我们专注于学习低级图像转换,尤其是变色的方法,而不是混合上下文特征,然后提出一种新颖的方案,以训练颜色样式转移与地面真相。此外,我们提出了一种名为Deep Prest的色彩样式转移。它被设计为1)概括从具有自然色的内容到修饰引用的颜色转换的功能,然后将其融合到内容的上下文特征中,2)预测应用低级色彩转换方法的超参数(设置或预设),3)造型内容具有类似的颜色样式的内容。我们脚本脚本脚本编辑照片的有力工具,可以使用Flick2k数据集中的1,200张图像生成600,000个培训样品,并使用69个设置来生成500个用户生成的预设。实验结果表明,我们的深层预设以定量和定性的色调转移以先前的作品优于先前的作品。
End-users, without knowledge in photography, desire to beautify their photos to have a similar color style as a well-retouched reference. However, the definition of style in recent image style transfer works is inappropriate. They usually synthesize undesirable results due to transferring exact colors to the wrong destination. It becomes even worse in sensitive cases such as portraits. In this work, we concentrate on learning low-level image transformation, especially color-shifting methods, rather than mixing contextual features, then present a novel scheme to train color style transfer with ground-truth. Furthermore, we propose a color style transfer named Deep Preset. It is designed to 1) generalize the features representing the color transformation from content with natural colors to retouched reference, then blend it into the contextual features of content, 2) predict hyper-parameters (settings or preset) of the applied low-level color transformation methods, 3) stylize content to have a similar color style as reference. We script Lightroom, a powerful tool in editing photos, to generate 600,000 training samples using 1,200 images from the Flick2K dataset and 500 user-generated presets with 69 settings. Experimental results show that our Deep Preset outperforms the previous works in color style transfer quantitatively and qualitatively.