论文标题
扩展逻辑的内部模型:第2部分
Inner Models from Extended Logics: Part 2
论文作者
论文摘要
我们介绍了由固定逻辑引起的新的内部型号$ c(aa)$。我们表明,假设一类适当的伍丁红衣主教或$ mm^{++} $,则可以在内部模型$ c(aa)$中测量常规的无数的红衣主教,而$ c(aa)$的理论是(set)as(set)强迫绝对和$ c(aa)$满足。我们介绍了一个辅助概念,我们称我们称俱乐部的决定性,这简化了$ c(aa)$的构建,但也可能具有独立的兴趣。根据俱乐部的确定性,我们介绍了AA-Mouse的概念,我们用来证明Inner Model $ C(AA)$的CH和其他属性。
We introduce a new inner model $C(aa)$ arising from stationary logic. We show that assuming a proper class of Woodin cardinals, or alternatively $MM^{++}$, the regular uncountable cardinals of $V$ are measurable in the inner model $C(aa)$, the theory of $C(aa)$ is (set) forcing absolute, and $C(aa)$ satisfies CH. We introduce an auxiliary concept that we call club determinacy, which simplifies the construction of $C(aa)$ greatly but may have also independent interest. Based on club determinacy, we introduce the concept of aa-mouse which we use to prove CH and other properties of the inner model $C(aa)$.