论文标题
拆分和扩展:弱监督的单元实例分割的推理时间改进
Split and Expand: An inference-time improvement for Weakly Supervised Cell Instance Segmentation
论文作者
论文摘要
我们考虑从苏木精和曙红(H&E)污渍中分割细胞核实例的问题,并具有较弱的监督。尽管最近的作品着重于提高分割质量,但通常不足,例如,分割的细胞实例汇集在一起或尺寸很小。在这项工作中,我们提出了一个两步的后处理程序,分开和扩展,直接改善了分割图的转换为实例。在拆分步骤中,我们通过高斯混合物模型聚类对细胞中心预测进行指导,将细胞的团块从分割映射分为单个细胞实例。在扩展步骤中,我们发现使用中心预测的缺失小细胞(使用可靠的点注释对小单元进行训练时倾向于更一致地捕获小细胞),并利用层面相关性传播(LRP)的解释结果将这些细胞中心预测扩展到细胞实例中。我们的分裂和扩展后处理过程是无培训的,仅在推理时间执行。为了进一步提高我们方法的性能,提出了基于LRP的重新加权损失。我们在Monuseg和TNBC数据集上测试了我们的过程,并表明我们提出的方法在对象级指标上提供了统计学上的显着改进。我们的代码将提供。
We consider the problem of segmenting cell nuclei instances from Hematoxylin and Eosin (H&E) stains with weak supervision. While most recent works focus on improving the segmentation quality, this is usually insufficient for instance segmentation of cell instances clumped together or with a small size. In this work, we propose a two-step post-processing procedure, Split and Expand, that directly improves the conversion of segmentation maps to instances. In the Split step, we split clumps of cells from the segmentation map into individual cell instances with the guidance of cell-center predictions through Gaussian Mixture Model clustering. In the Expand step, we find missing small cells using the cell-center predictions (which tend to capture small cells more consistently as they are trained using reliable point annotations), and utilize Layer-wise Relevance Propagation (LRP) explanation results to expand those cell-center predictions into cell instances. Our Split and Expand post-processing procedure is training-free and is executed at inference-time only. To further improve the performance of our method, a feature re-weighting loss based on LRP is proposed. We test our procedure on the MoNuSeg and TNBC datasets and show that our proposed method provides statistically significant improvements on object-level metrics. Our code will be made available.