论文标题
Teichműlller磁盘系列中翻译的代数交叉点
Algebraic intersection for translation sufaces in a family of Teichműller disks
论文作者
论文摘要
该设置是一个方形的表面X。我们研究了所有封闭曲线上的量kVol,其代数交点是在所有对封闭曲线上定义的,其代数交点除以其长度的乘积,times x的体积x(以便使其比例不景气)。我们提供双曲线几何结构,以计算一个方形表面的Teichműlller磁盘中的KVOL。
The setting is a square-tiled surface X. We study the quantity KVol, defined as the supremum over all pairs of closed curves, of their algebraic intersection divided by the product of their length, times the volume of X (so as to make it scaling-invariant). We give a hyperbolic-geometric construction to compute KVol in a family of Teichműller disks of square-tiled surfaces.