论文标题
密集的混合复发性多视图立体网,具有动态一致性检查
Dense Hybrid Recurrent Multi-view Stereo Net with Dynamic Consistency Checking
论文作者
论文摘要
在本文中,我们提出了一个具有动态一致性检查的高效和有效的混合复发的多视图立体网,即$ d^{2} $ HC-RMVSNET,以进行准确的密集点云重建。 Our novel hybrid recurrent multi-view stereo net consists of two core modules: 1) a light DRENet (Dense Reception Expanded) module to extract dense feature maps of original size with multi-scale context information, 2) a HU-LSTM (Hybrid U-LSTM) to regularize 3D matching volume into predicted depth map, which efficiently aggregates different scale information by coupling LSTM and U-Net architecture.为了进一步提高重建点云的准确性和完整性,我们利用动态的一致性检查策略,而不是在现有方法中广泛采用的密集点云重建方法中广泛采用的前缀参数和策略。这样,我们在所有视图中动态汇总了几何一致性匹配误差。我们的方法在复杂的户外\ textsl {tanks and pamples}基准上排名\ textbf {$ 1^{st} $}在所有方法上。在室内DTU数据集上进行的广泛实验表明,我们的方法对最先进的方法表现出竞争性能,同时大大降低了内存消耗,这仅需$ 19.4 \%\%的R-MVSNET存储器消耗。该代码库可在\ HyperLink {https://github.com/yhw-yhw/d2hc-rmvsnet} {https://github.com/yhw-yhw-yhw/d2hc-rmmvsnet}中获得。
In this paper, we propose an efficient and effective dense hybrid recurrent multi-view stereo net with dynamic consistency checking, namely $D^{2}$HC-RMVSNet, for accurate dense point cloud reconstruction. Our novel hybrid recurrent multi-view stereo net consists of two core modules: 1) a light DRENet (Dense Reception Expanded) module to extract dense feature maps of original size with multi-scale context information, 2) a HU-LSTM (Hybrid U-LSTM) to regularize 3D matching volume into predicted depth map, which efficiently aggregates different scale information by coupling LSTM and U-Net architecture. To further improve the accuracy and completeness of reconstructed point clouds, we leverage a dynamic consistency checking strategy instead of prefixed parameters and strategies widely adopted in existing methods for dense point cloud reconstruction. In doing so, we dynamically aggregate geometric consistency matching error among all the views. Our method ranks \textbf{$1^{st}$} on the complex outdoor \textsl{Tanks and Temples} benchmark over all the methods. Extensive experiments on the in-door DTU dataset show our method exhibits competitive performance to the state-of-the-art method while dramatically reduces memory consumption, which costs only $19.4\%$ of R-MVSNet memory consumption. The codebase is available at \hyperlink{https://github.com/yhw-yhw/D2HC-RMVSNet}{https://github.com/yhw-yhw/D2HC-RMVSNet}.