论文标题

通过少量多维ODE和非lipschitz系数正规化

On regularization by a small noise of multidimensional ODEs with non-Lipschitz coefficients

论文作者

Kulik, Alexei, Pilipenko, Andrey

论文摘要

在本文中,我们解决了一个 多维SDE的选择问题 $ d x^\ varepsilon(t)= a(x^\ varepsilon(t))d t+\ varepsilonσ(x^\ varepsilon(t))\,d w(t)$,漂移和扩散是本地的lipschitz continally Lipschitz的连续固定型超级Pleplane $ h $。 假定$ x^\ varepsilon(0)= x^0 \在h $中,漂移$ a(x)$具有hoelder渐近肌,$ x $接近$ h $,而极限$ d x(t)= a(x(x(t))\,d t $没有独特的解决方案。 我们表明,如果漂移将解决方案推开$ h $,则具有某些概率的限制过程将选择一些极限的解决方案。如果漂移将解决方案吸引到$ h $,则极限过程可以通过一些平均系数满足颂歌。为了证明最后的结果,我们制定了一个平均原理,这是一般和新的。

In this paper we solve a selection problem for multidimensional SDE $d X^\varepsilon(t)=a(X^\varepsilon(t)) d t+\varepsilon σ(X^\varepsilon(t))\, d W(t)$, where the drift and diffusion are locally Lipschitz continuous outside of a fixed hyperplane $H$. It is assumed that $X^\varepsilon(0)=x^0\in H$, the drift $a(x)$ has a Hoelder asymptotics as $x$ approaches $H$, and the limit ODE $d X(t)=a(X(t))\, d t$ does not have a unique solution. We show that if the drift pushes the solution away of $H$, then the limit process with certain probabilities selects some extreme solutions to the limit ODE. If the drift attracts the solution to $H$, then the limit process satisfies an ODE with some averaged coefficients. To prove the last result we formulate an averaging principle, which is quite general and new.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源