论文标题

IBM联合学习:企业框架白皮书v0.1

IBM Federated Learning: an Enterprise Framework White Paper V0.1

论文作者

Ludwig, Heiko, Baracaldo, Nathalie, Thomas, Gegi, Zhou, Yi, Anwar, Ali, Rajamoni, Shashank, Ong, Yuya, Radhakrishnan, Jayaram, Verma, Ashish, Sinn, Mathieu, Purcell, Mark, Rawat, Ambrish, Minh, Tran, Holohan, Naoise, Chakraborty, Supriyo, Whitherspoon, Shalisha, Steuer, Dean, Wynter, Laura, Hassan, Hifaz, Laguna, Sean, Yurochkin, Mikhail, Agarwal, Mayank, Chuba, Ebube, Abay, Annie

论文摘要

由于隐私,机密性或数据量的原因,联合学习(FL)是一种在不集中培训数据的情况下进行机器学习的方法。但是,解决联合机器学习问题会导致高于集中机器学习的问题。这些问题包括在各方之间建立通信基础架构,协调学习过程,整合方面的结果,了解不同参与方的培训数据集的特征,处理数据异质性以及在没有验证数据集的情况下运行。 IBM联合学习为联邦学习提供了基础架构和协调。数据科学家可以根据现有的集中机器学习模型设计和运行联合学习工作,并可以提供有关如何运营联邦的高级指令。该框架适用于深层神经网络以及最常见的机器学习库的``传统''方法。 {\ proj}使数据科学家能够将其范围从集中式的机器学习扩展到最小化的学习曲线,同时还提供了将其部署到不同计算环境和设计自定义融合算法的灵活性。

Federated Learning (FL) is an approach to conduct machine learning without centralizing training data in a single place, for reasons of privacy, confidentiality or data volume. However, solving federated machine learning problems raises issues above and beyond those of centralized machine learning. These issues include setting up communication infrastructure between parties, coordinating the learning process, integrating party results, understanding the characteristics of the training data sets of different participating parties, handling data heterogeneity, and operating with the absence of a verification data set. IBM Federated Learning provides infrastructure and coordination for federated learning. Data scientists can design and run federated learning jobs based on existing, centralized machine learning models and can provide high-level instructions on how to run the federation. The framework applies to both Deep Neural Networks as well as ``traditional'' approaches for the most common machine learning libraries. {\proj} enables data scientists to expand their scope from centralized to federated machine learning, minimizing the learning curve at the outset while also providing the flexibility to deploy to different compute environments and design custom fusion algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源