论文标题
银河磁盘中星星的空间和运动学聚类
Spatial and Kinematic Clustering of Stars in the Galactic Disk
论文作者
论文摘要
由于星形电位中的恒星形成和非轴对称性,预计银河磁盘在空间,运动学上是在许多尺度上进行化学聚集的。在这项工作中,我们使用$ 1.7 \ times 10^6 $ stars的样本在太阳的1 kpc内计算出空间和运动学两点相关函数,并使用\ textit {gaia} dr2获得6D相位空间信息。在1-300 PC的空间尺度上检测到聚类,并且至少15 km S $^{ - 1} $的速度尺度检测到聚类。包含结构结构,数据在大多数空间尺度下都具有$γ\-2 $的幂律指数($ξ(ΔR)\ proptoΔr^γ$),这与理论预测一致。删除界限结构后,数据的幂律索引为$γ\ 1 $,$ <100 $ pc和$γ\ lyseSim -1.5 $,对于$> 100 $ pc。我们借助了一个新的星系模拟来解释这些结果,其中恒星出生在包含螺旋臂,棒和GMC的现实潜力的群集中。我们发现,模拟在所有空间和运动量表上都与观测值(在2-3倍以内)一致。详细说明,模拟中的相关函数比$ <20 $ pc秤的数据浅,比$> 30 $ pc scale的数据陡峭。我们还在模拟中不存在的大型$ΔV$($> 5 $ km s $^{ - 1} $的数据的运动相关函数中找到一个持久的聚类信号。我们推测观测和模拟之间的这种不匹配可能是由于模拟中未包括两个过程:分层星形成和瞬态螺旋臂。我们还使用模拟来预测聚类信号,这是成对金属性和年龄分离的函数。为了增强聚类信号,需要以$ 50 \%$ $ 50 \%$ $ 50 \%$ $ 50 \%$和0.05 $ dex衡量的年龄和金属性。
The Galactic disk is expected to be spatially, kinematically, and chemically clustered on many scales due to both star formation and non-axisymmetries in the Galactic potential. In this work we calculate the spatial and kinematic two-point correlation functions using a sample of $1.7 \times 10^6$ stars within 1 kpc of the Sun with 6D phase space information available from \textit{Gaia} DR2. Clustering is detected on spatial scales of 1-300 pc and velocity scales of at least 15 km s$^{-1}$. With bound structures included, the data have a power-law index ($ξ(Δr) \propto Δr^γ$) of $γ\approx-2$ at most spatial scales, which is in line with theoretical predictions. After removing bound structures, the data have a power-law index of $γ\approx-1$ for $<100$ pc and $γ\lesssim -1.5$ for $>100$ pc. We interpret these results with the aid of a novel star-by-star simulation of the Galaxy in which stars are born in clusters orbiting in a realistic potential that includes spiral arms, a bar, and GMCs. We find that the simulation largely agrees with the observations (within a factor of 2-3) at all spatial and kinematic scales. In detail, the correlation function in the simulation is shallower than the data at $< 20$ pc scales, and steeper than the data at $> 30$ pc scales. We also find a persistent clustering signal in the kinematic correlation function for the data at large $Δv$ ($>5$ km s$^{-1}$) not present in the simulations. We speculate that this mismatch between observations and simulations may be due to two processes not included in the simulation: hierarchical star formation and transient spiral arms. We also use the simulations to predict the clustering signal as a function of pair-wise metallicity and age separations. Ages and metallicities measured with a precision of $50\%$ and $0.05$ dex are required in order to enhance the clustering signal.