论文标题
关于安德森t模块和特征p多个zeta值的对数偏格的身份
On Log-Algebraic Identities for Anderson t-modules and Characteristic p Multiple Zeta Values
论文作者
论文摘要
基于Stark单位的概念,我们提出了一种新方法,该方法获得了安德森T模型的对数代数身份的改进。结果,我们建立了Chang定理对特定特征P多个Zeta值(MZV)的对数解释的概括,并在此方向上恢复了许多早期结果。此外,我们设计了一种直接和概念的方法,以对MZV和V-ADIC MZV进行对数解释。这完全概括了安德森和塔库尔为卡里茨Zeta值的工作。
Based on the notion of Stark units we present a new approach that obtains refinements of log-algebraic identities for Anderson t-modules. As a consequence, we establish a generalization of Chang's theorem on logarithmic interpretations for special characteristic p multiple zeta values (MZV's) and recover many earlier results in this direction. Further, we devise a direct and conceptual way to get logarithmic interpretations for both MZV's and v-adic MZV's. This generalizes completely the work of Anderson and Thakur for Carlitz zeta values.