论文标题

使用二进制合并GW190814的重力波对哈勃常数的测量

A Measurement of the Hubble Constant using Gravitational Waves from the Binary Merger GW190814

论文作者

Vasylyev, Sergiy, Filippenko, Alex

论文摘要

We present a test of the statistical method introduced by Bernard F. Shutz in 1986 using only gravitational waves to infer the Hubble constant ($\text{H}_0$) from GW190814, the first high-probability neutron-star--black-hole (NS-BH) merger candidate detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) and the Virgo interferometer.我们将此方法的基线测试应用于二进制中子星(BNS)合并GW170817,并找到$ \ text {h} _0 = 70 = 70^{+35.0} _ { - 18.0} $ s $ s $ s $ s $ s $^{ - 1} $^{ - 1} $ mpc $ mpc $ mpc $^{ - 1}} $ b $ band的发光度阈值$ l_b \ geq 0.001 l_b^*$,对目录不完整进行更正。重复GW190814的计算,我们获得$ \ text {h} _0 = 67^{+41.0} _ { - 26.0} $ km s $ s $ s $ s $^{ - 1} $ mpc $^{ - 1} $} S $^{ - 1} $ mpc $^{ - 1} $ for $ l_b \ geq 0.001 l_b^*$和$ l_b \ geq 0.626 l_b^*$。结合两个事件的后代均产生$ \ text {h} _0 = 70^{+29.0} _ { - 18.0} $ km s $ s $ s $^{ - 1} $ mpc $^{ - 1} $,在使用多个层次波动事件时证明对约束的改进。我们还确认了采用此方法的其他作品的结果,表明增加$ L_B $阈值可以增强后验结构,并稍微将分布的峰值转移到更高的$ \ text {h} _0 $ values。我们使用低旋转现象(Abbott etal。2019a)重复联合推理,并分别用于GW170817和GW190814,新近可用的合并(Seobnrv4phm + Imrphenompv3Hm; Abbott等人的后验),分别达到了$ texteraint of ticle n = a $ 69^{+29.0} _ { - 14.0} $ km s $^{ - 1} $ mpc $^{ - 1} $。

We present a test of the statistical method introduced by Bernard F. Shutz in 1986 using only gravitational waves to infer the Hubble constant ($\text{H}_0$) from GW190814, the first high-probability neutron-star--black-hole (NS-BH) merger candidate detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) and the Virgo interferometer. We apply a baseline test of this method to the binary neutron star (BNS) merger GW170817 and find $\text{H}_0 = 70^{+35.0}_{-18.0}$km s$^{-1}$ Mpc$^{-1}$ (maximum {\it a posteriori} and 68.3\% highest density posterior interval) for a galaxy $B$-band luminosity threshold of $L_B \geq 0.001 L_B^*$ with a correction for catalog incompleteness. Repeating the calculation for GW190814, we obtain $\text{H}_0 = 67^{+41.0}_{-26.0}$ km s$^{-1}$ Mpc$^{-1}$ and $\text{H}_0 = 71^{+34.0}_{-30.0}$ km s$^{-1}$ Mpc$^{-1}$ for $L_B \geq 0.001 L_B^*$ and $L_B \geq 0.626 L_B^*$, respectively. Combining the posteriors for both events yields $\text{H}_0 = 70^{+29.0}_{-18.0}$ km s$^{-1}$ Mpc$^{-1}$, demonstrating the improvement on constraints when using multiple gravitational-wave events. We also confirm the results of other works that adopt this method, showing that increasing the $L_B$ threshold enhances the posterior structure and slightly shifts the distribution's peak to higher $\text{H}_0$ values. We repeat the joint inference using the low-spin PhenomPNRT (Abbott et al. 2019a) and the newly available combined (SEOBNRv4PHM + IMRPhenomPv3HM; Abbott et al. 2020) posterior samples for GW170817 and GW190814, respectively, achieving a tighter constraint of $\text{H}_0 = 69^{+29.0}_{-14.0}$ km s$^{-1}$ Mpc$^{-1}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源