论文标题
金属合金中的形成能拼图:随机相位近似无法预测准确的形成能
Formation energy puzzle in intermetallic alloys: Random phase approximation fails to predict accurate formation energies
论文作者
论文摘要
我们进行了密度功能计算,以估计金属合金的形成能。我们使用了两个半近似值,即Perdew-Burke-Ernzerhof(PBE)的广义梯度近似(GGA),以及强烈约束且适当的标准(SCAN)元元。此外,我们使用了两个非局部DFT功能,即混合HSE06和最新的随机相近似(RPA)。诸如HSE06和RPA之类的非本地功能产生具有完全填充的D波段金属的二元合金的准确形成能,其中半局部功能的表现不佳。当合金中存在部分填充的D波段金属时,非局部功能的准确性大大降低,而在这些情况下,PBE-GGA的表现胜过。我们表明,通过任何DFT方法对形成能的准确预测取决于其预测准确的电子特性的能力,例如价D波段对状态密度(DOS)的贡献。扫描元ggga通常会纠正PBE-DOS,但是,与PBE相比,它没有提供准确的地层能量。这被认为是由于缺乏适当的误差取消,应由于合金及其成分的相似性质而应预期,这可能会随着元gga成分的修饰而改善。 RPA产生的合金具有部分填充D波段金属的合金。 RPA结果可以通过恢复交换相关内核来纠正,从而改善金属密度的短距离电子电子相关性。
We performed density functional calculations to estimate the formation energies of intermetallic alloys. We used two semilocal approximations, the generalized gradient approximation (GGA) by Perdew-Burke-Ernzerhof (PBE) and the strongly constrained and appropriately normed (SCAN) meta-GGA. In addition, we utilized two nonlocal DFT functionals, the hybrid HSE06, and the state-of-the-art random phase approximation (RPA). The nonlocal functionals such as HSE06 and RPA yield accurate formation energies of binary alloys with completely-filled d-band metals, where semilocal functionals underperform. The accuracy at the nonlocal functionals is greatly reduced when a partially-filled d-band metal is present in an alloy, while PBE-GGA outperforms in these cases. We show that the accurate prediction of formation energies by any DFT method depends on its ability to predict the accurate electronic properties, e.g., valence d-band contribution to the density of states (DOS). The SCAN meta-GGA often corrects the PBE-DOS, however, it does not provide accurate formation energies compared to PBE. This is assumed to be due to the lack of proper error cancellation that should be expected due to the similar bulk nature of both alloys and their constituents, which may improve with the modification of meta-GGA ingredients. RPA yields too negative formation energies of alloys with partially-filled d-band metals. RPA results can be corrected by restoring the exchange-correlation kernel, thereby improving the short-range electron-electron correlation in metallic densities.