论文标题

交易:图像分类的深度证据积极学习

DEAL: Deep Evidential Active Learning for Image Classification

论文作者

Hemmer, Patrick, Kühl, Niklas, Schöffer, Jakob

论文摘要

卷积神经网络(CNN)已被证明是监督计算机视觉任务(例如图像分类)的最新模型。但是,对于此类模型的培训和验证,通常需要大型标记的数据集。在许多域中,没有标记的数据可用,但是标签很昂贵,例如,当需要特定的专家知识时。主动学习(AL)是减轻标记数据有限的问题的一种方法。通过选择标签的最有用和代表性的数据实例,AL可以为模型的更有效学习做出贡献。 CNN的最新方法提出了不同的解决方案,以选择要标记的实例。但是,它们的表现不佳,并且通常在计算上很昂贵。在本文中,我们提出了一种新型的AL算法,该算法通过捕获高预测不确定性从未标记的数据中有效地学习。通过用Dirichlet密度的参数替换CNN的SoftMax标准输出,该模型学会了识别有效地改善训练过程中模型性能的数据实例。我们在几个实验中使用公开可用的数据证明,我们的方法始终优于其他最先进的方法。它可以轻松实施,并且不需要大量的计算资源进行培训。此外,我们能够在胸部X光片上自动检测视觉信号的自动检测领域中在现实世界中的医疗用例中显示该方法的好处。

Convolutional Neural Networks (CNNs) have proven to be state-of-the-art models for supervised computer vision tasks, such as image classification. However, large labeled data sets are generally needed for the training and validation of such models. In many domains, unlabeled data is available but labeling is expensive, for instance when specific expert knowledge is required. Active Learning (AL) is one approach to mitigate the problem of limited labeled data. Through selecting the most informative and representative data instances for labeling, AL can contribute to more efficient learning of the model. Recent AL methods for CNNs propose different solutions for the selection of instances to be labeled. However, they do not perform consistently well and are often computationally expensive. In this paper, we propose a novel AL algorithm that efficiently learns from unlabeled data by capturing high prediction uncertainty. By replacing the softmax standard output of a CNN with the parameters of a Dirichlet density, the model learns to identify data instances that contribute efficiently to improving model performance during training. We demonstrate in several experiments with publicly available data that our method consistently outperforms other state-of-the-art AL approaches. It can be easily implemented and does not require extensive computational resources for training. Additionally, we are able to show the benefits of the approach on a real-world medical use case in the field of automated detection of visual signals for pneumonia on chest radiographs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源