论文标题

结合3D人类重建的隐式功能学习和参数模型

Combining Implicit Function Learning and Parametric Models for 3D Human Reconstruction

论文作者

Bhatnagar, Bharat Lal, Sminchisescu, Cristian, Theobalt, Christian, Pons-Moll, Gerard

论文摘要

表示为深度学习近似的隐式功能对于重建3D表面是有力的。但是,它们只能产生不可控制的静态表面,这可以通过编辑其姿势或形状参数来修改所得模型的能力有限。然而,此类功能对于为计算机图形和计算机视觉构建灵活模型至关重要。在这项工作中,我们提出了结合细节的隐式函数和参数表示的方法,以便重建即使在服装的存在下,这些模型也可以控制和准确。给定在衣服人员表面采样的稀疏3D点云,我们使用隐式零件网络(IP-NET)共同预测着衣服的人的外部3D表面,内部身体和内部身体表面以及与参数体模型的语义对应。随后,我们使用对应关系将身体模型拟合到我们的内表面,然后将其不合格(在参数体 +位移模型下)变形到外表面,以捕获服装,脸部和头发细节。在具有全身数据和手动扫描的定量和定性实验中,我们表明所提出的方法可以概括,即使是从单视深度图像收集的不完整点云也是有效的。我们的模型和代码可以从http://virtualhumans.mpi-inf.mpg.de/ipnet下载。

Implicit functions represented as deep learning approximations are powerful for reconstructing 3D surfaces. However, they can only produce static surfaces that are not controllable, which provides limited ability to modify the resulting model by editing its pose or shape parameters. Nevertheless, such features are essential in building flexible models for both computer graphics and computer vision. In this work, we present methodology that combines detail-rich implicit functions and parametric representations in order to reconstruct 3D models of people that remain controllable and accurate even in the presence of clothing. Given sparse 3D point clouds sampled on the surface of a dressed person, we use an Implicit Part Network (IP-Net)to jointly predict the outer 3D surface of the dressed person, the and inner body surface, and the semantic correspondences to a parametric body model. We subsequently use correspondences to fit the body model to our inner surface and then non-rigidly deform it (under a parametric body + displacement model) to the outer surface in order to capture garment, face and hair detail. In quantitative and qualitative experiments with both full body data and hand scans we show that the proposed methodology generalizes, and is effective even given incomplete point clouds collected from single-view depth images. Our models and code can be downloaded from http://virtualhumans.mpi-inf.mpg.de/ipnet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源