论文标题
基于深度学习的FPGA功能块检测方法,带有bitstream到图像转换
A Deep Learning-Based FPGA Function Block Detection Method with Bitstream to Image Transformation
论文作者
论文摘要
在各种应用程序方案和/或为了加强现场可编程的门阵列(FPGA)安全性的情况下,需要分析FPGA设计的系统功能,这可以通过系统地将FPGA的Bottream的Botstream的bottream分配到可管理的功能块中来实现,并检测其功能性。在本文中,我们提出了一种具有三个主要步骤的新型基于深度学习的FPGA功能块检测方法。具体而言,我们首先分析Bitstream的格式,以获得配置位和可配置逻辑块之间的映射关系,因为一个元素的bitstream中配置位的不连续性。为了基于深度学习的对象检测技术的成熟度,我们的下一步是按照所提出的转换方法将FPGA bitstream转换为图像,该方法既考虑了可编程逻辑的邻接性质和配置信息的高度冗余。获得图像后,将基于深度学习的对象检测算法应用于此转换的图像,并且可以反射检测到的对象以确定原始FPGA设计的功能块。用于功能块检测的深神经网络经过专门精心设计的Bitstream/Image数据集训练和验证。实验已经证实了所提出的功能检测方法的高检测准确性,显示了在Xilinx Zynq-7000 SOC和Zynq Ultrascale+ MPSOC上实现的YOLOV3检测器中10个功能块的平均平均精度(IOU = 0.5)的98.11%。
In the context of various application scenarios and/or for the sake of strengthening field-programmable gate array (FPGA) security, the system functions of an FPGA design need to be analyzed, which can be achieved by systematically partitioning the FPGA's bitstream into manageable functional blocks and detecting their functionalities thereafter. In this paper, we propose a novel deep learning-based FPGA function block detection method with three major steps. In specific, we first analyze the format of the bitstream to obtain the mapping relationship between the configuration bits and configurable logic blocks because of the discontinuity of the configuration bits in the bitstream for one element. In order to reap the maturity of object detection techniques based on deep learning, our next step is to convert an FPGA bitstream to an image, following the proposed transformation method that takes account of both the adjacency nature of the programmable logic and the high degree of redundancy of configuration information. Once the image is obtained, a deep learning-based object detection algorithm is applied to this transformed image, and the objects detected can be reflected back to determine the function blocks of the original FPGA design. The deep neural network used for function block detection is trained and validated with a specially crafted bitstream/image dataset. Experiments have confirmed high detection accuracy of the proposed function detection method, showing a 98.11% of mean Average Precision (IoU=0.5) for 10 function blocks within a YOLOv3 detector implemented on Xilinx Zynq-7000 SoCs and Zynq UltraScale+ MPSoCs.