论文标题

NISQ时代的多体物理学:量子编程离散时间晶体

Many-body physics in the NISQ era: quantum programming a discrete time crystal

论文作者

Ippoliti, Matteo, Kechedzhi, Kostyantyn, Moessner, Roderich, Sondhi, S. L., Khemani, Vedika

论文摘要

通过引入具有前所未有的控制和测量功能的新实验室平台,在嘈杂的,中等规模量子(NISQ)设备的领域的最新进展代表了多体物理学的激动人心的机会。我们从实践意义上探讨了NISQ平台对多体物理学的含义:我们询问哪种{\ IT物理现象},在量子统计力学领域中,它们可能比传统的实验平台更容易实现。作为一个特别合适的目标,我们确定了离散的时间晶体(DTC),即打破时间翻译对称性的物质的新型非平衡状态。这些只能在定期驱动的量子系统的本质内外平衡设置中实现,这些系统被疾病诱导的多体定位稳定。虽然已经在各种实验平台上观察到了DTC的前体 - 从被困的离子到氮的空位中心,再到NMR晶体 - 没有一个具有\ emph {all}是实现该阶段完整的化身的必要成分,并且可以检测其标志性的长范围\ emph emph orph respor cormpor {spatatiotmormporpor}。我们表明,可以对新一代的量子模拟器进行编程以实现DTC阶段并实验检测其动力学属性,这是一项任务,需要具有可编程性,初始化和读取功能的广泛功能。具体而言,Google的Sycamore处理器的体系结构与手头的任务非常紧密。我们还讨论了环境破裂的效果,以及如何将它们与封闭系统热化动力学的“内部”反应区分开。已经有了现有的技术和噪声水平,我们发现DTC时空订单将在数百个时期内观察到,并且随着硬件的进步,参数改进。

Recent progress in the realm of noisy, intermediate scale quantum (NISQ) devices represents an exciting opportunity for many-body physics, by introducing new laboratory platforms with unprecedented control and measurement capabilities. We explore the implications of NISQ platforms for many-body physics in a practical sense: we ask which {\it physical phenomena}, in the domain of quantum statistical mechanics, they may realize more readily than traditional experimental platforms. As a particularly well-suited target, we identify discrete time crystals (DTCs), novel non-equilibrium states of matter that break time translation symmetry. These can only be realized in the intrinsically out-of-equilibrium setting of periodically driven quantum systems stabilized by disorder induced many-body localization. While precursors of the DTC have been observed across a variety of experimental platforms - ranging from trapped ions to nitrogen vacancy centers to NMR crystals - none have \emph{all} the necessary ingredients for realizing a fully-fledged incarnation of this phase, and for detecting its signature long-range \emph{spatiotemporal order}. We show that a new generation of quantum simulators can be programmed to realize the DTC phase and to experimentally detect its dynamical properties, a task requiring extensive capabilities for programmability, initialization and read-out. Specifically, the architecture of Google's Sycamore processor is a remarkably close match for the task at hand. We also discuss the effects of environmental decoherence, and how they can be distinguished from `internal' decoherence coming from closed-system thermalization dynamics. Already with existing technology and noise levels, we find that DTC spatiotemporal order would be observable over hundreds of periods, with parametric improvements to come as the hardware advances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源