论文标题
BMS模块化日记:圆环单点功能
BMS Modular Diaries: Torus one-point function
论文作者
论文摘要
在邦迪 - 米兹纳 - 索克斯(BMS)组下,二维场理论不变,在三个维度上猜想是对渐近平坦的空位。在本文中,我们继续研究这些现场理论的模块化特性。特别是,我们专注于BMS圆环一分函数。我们使用两种不同的方法来达到使用圆环一分点函数的模块化特性的理论中的渐近结构常数的表达式。然后,我们集中于BMS最高权重表示,并得出许多新结果,其中最重要的是BMS圆环块。在大量的特定限制中,我们得出了BMS圆环块的前导和子领先部分,然后我们用它来重新启动BMS初级渐近结构常数的表达式。最后,我们基于测量近似的平面宇宙学解决方案的背景中对探针标量进行了大量计算,以重现我们的现场理论结果。
Two dimensional field theories invariant under the Bondi-Metzner-Sachs (BMS) group are conjectured to be dual to asymptotically flat spacetimes in three dimensions. In this paper, we continue our investigations of the modular properties of these field theories. In particular, we focus on the BMS torus one-point function. We use two different methods to arrive at expressions for asymptotic structure constants for general states in the theory utilising modular properties of the torus one-point function. We then concentrate on the BMS highest weight representation, and derive a host of new results, the most important of which is the BMS torus block. In a particular limit of large weights, we derive the leading and sub-leading pieces of the BMS torus block, which we then use to rederive an expression for the asymptotic structure constants for BMS primaries. Finally, we perform a bulk computation of a probe scalar in the background of a flatspace cosmological solution based on the geodesic approximation to reproduce our field theoretic results.