论文标题
cu $ _ {4-x}的磁相图
Magnetic phase diagram of Cu$_{4-x}$Zn$_x$(OH)$_6$FBr studied by neutron-diffraction and $μ$SR techniques
论文作者
论文摘要
我们已经系统地研究了Cu $ _ {4-X} $ Zn $ _x $(OH)$ _ 6 $ fbr的磁性特性,由中子衍射和Muon旋转旋转和放松($μ$ SR)技术。中子 - 划分测量值表明,$ x $ = 0样品中的远程磁性和正常核结构可以持续到$ x $ = 0.23和0.43。零视野(ZF)$μ$ SR光谱的温度依赖性提供了两个特征温度,$ t_ {a0} $和$t_λ$。从先前报道的磁性敏感性测量值中的$ t_ {a0} $和$ t_m $之间的比较表明,前者来自持久持续到$ x $ = 0.82的短距离间层间旋转群集。另一方面,$t_λ$变为零的掺杂水平约为0.66,远高于远程顺序的阈值,即$ \ sim $ 0.4。我们的结果表明,核结构的变化可能会改变kagome层的自旋动力学,并且使用完美的kagome平面可能存在于$ x $ = 0.66以上的量子旋转状态。
We have systematically studied the magnetic properties of Cu$_{4-x}$Zn$_x$(OH)$_6$FBr by the neutron diffraction and muon spin rotation and relaxation ($μ$SR) techniques. Neutron-diffraction measurements suggest that the long-range magnetic order and the orthorhombic nuclear structure in the $x$ = 0 sample can persist up to $x$ = 0.23 and 0.43, respectively. The temperature dependence of the zero-field (ZF) $μ$SR spectra provide two characteristic temperatures, $T_{A0}$ and $T_λ$. Comparison between $T_{A0}$ and $T_M$ from previously reported magnetic-susceptibility measurements suggest that the former comes from the short-range interlayer-spin clusters that persist up to $x$ = 0.82. On the other hand, the doping level where $T_λ$ becomes zero is about 0.66, which is much higher than threshold of the long-range order, i.e., $\sim$ 0.4. Our results suggest that the change in the nuclear structure may alter the spin dynamics of the kagome layers and a gapped quantum-spin-liquid state may exist above $x$ = 0.66 with the perfect kagome planes.