论文标题

单位磁盘图中的总统治

Total Domination in Unit Disk Graphs

论文作者

Jena, Sangram K., Das, Gautam K.

论文摘要

令$ g =(v,e)$为无向图。如果每个顶点$ v \ in v $中的每个顶点$ v \ in自身以外的$ d $,我们将$ d_t \ subseteq v $称为$ g $的总统治集(TDS)。在这里,我们考虑了单位磁盘图中的TDS问题,其中目的是为输入图找到最小的基数总统治设置。我们证明TDS问题是单位磁盘图中的NP-HARD。接下来,我们为问题提出了8个因子近似算法。提出的近似算法的运行时间为$ O(n \ log K)$,其中$ n $是输入图的顶点,$ k $是输出大小。我们还表明,TDS问题在单位磁盘图中接受PTA。

Let $G=(V,E)$ be an undirected graph. We call $D_t \subseteq V$ as a total dominating set (TDS) of $G$ if each vertex $v \in V$ has a dominator in $D$ other than itself. Here we consider the TDS problem in unit disk graphs, where the objective is to find a minimum cardinality total dominating set for an input graph. We prove that the TDS problem is NP-hard in unit disk graphs. Next, we propose an 8-factor approximation algorithm for the problem. The running time of the proposed approximation algorithm is $O(n \log k)$, where $n$ is the number of vertices of the input graph and $k$ is output size. We also show that TDS problem admits a PTAS in unit disk graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源