论文标题
定义戈伦斯坦环的理想的预期复兴
Expected resurgence of ideals defining Gorenstein rings
论文作者
论文摘要
在同一位作者的先前工作的基础上,我们表明,定义戈伦斯坦环的某些理想预计会复兴,因此满足了稳定的Harbourne猜想。在主要特征中,我们可以采取任何根本的理想,以定义戈伦斯坦环的常规环,前提是其符号能力是通过具有最大理想的饱和度给出的。尽管此属性不适合减少特征$ p $,但我们表明,在额外的假设中,类似的结果符合$ 0 $的$ 0 $,即符号REES代数为$ i $ $ $。
Building on previous work by the same authors, we show that certain ideals defining Gorenstein rings have expected resurgence, and thus satisfy the stable Harbourne Conjecture. In prime characteristic, we can take any radical ideal defining a Gorenstein ring in a regular ring, provided its symbolic powers are given by saturations with the maximal ideal. While this property is not suitable for reduction to characteristic $p$, we show that a similar result holds in equicharacteristic $0$ under the additional hypothesis that the symbolic Rees algebra of $I$ is noetherian.