论文标题
在软阈值校正旁边的dis和sia过程
On next to soft threshold corrections to DIS and SIA processes
论文作者
论文摘要
我们研究了深度非弹性散射(DIS)和半包含的$ E^+E^ - $ nihihilation(SIA)过程的阈值增强对数的扰动结构,并设置一个框架,以将它们汇总到扰动理论中的所有顺序。阈值对数显示为分布$((1-Z)^{ - 1} \ log^i(1-Z))_+$来自SOFT PLUS PLUS Virtual(sv)和对数$ \ log^i(1-Z)$,来自SV(NSV)的贡献。我们使用Sudakov差异和重量法化组方程以及Parton级横截面的分解特性来获得重新召集的结果,该结果预测了SV以及SV对强耦合常数中所有订单的贡献。在Mellin $ n $ Space中,我们恢复了$ \ log^i(n)$保留$ 1/n $校正的大型对数。特别是,对数的塔,每种形式的$ a_s^n/n^α\ log^{2n-α}(n),a_s^n/n^α\ log^{2n-1-α}(2n-1-α}(n)(n)\ cdots $ et for $ $α= 0,1 $,以$ a = 0,1 $的订单。
We study the perturbative structure of threshold enhanced logarithms in the coefficient functions of deep inelastic scattering (DIS) and semi-inclusive $e^+e^-$ annihilation (SIA) processes and setup a framework to sum them up to all orders in perturbation theory. Threshold logarithms show up as the distributions $((1-z)^{-1} \log^i(1-z))_+$ from the soft plus virtual (SV) and as logarithms $\log^i(1-z)$ from next to SV (NSV) contributions. We use the Sudakov differential and the renormalisation group equations along with the factorisation properties of parton level cross sections to obtain the resummed result which predicts SV as well as next to SV contributions to all orders in strong coupling constant. In Mellin $N$ space, we resum the large logarithms of the form $\log^i(N)$ keeping $1/N$ corrections. In particular, the towers of logarithms, each of the form $a_s^n/N^α\log^{2n-α} (N), a_s^n/N^α\log^{2n-1-α}(N) \cdots $ etc for $α=0,1$, are summed to all orders in $a_s$.