论文标题
高氘分数的分子云核:Nobeyama单点调查
Molecular Cloud Cores with High Deuterium Fraction: Nobeyama Single-Pointing Survey
论文作者
论文摘要
我们介绍了对207个密集的核心进行的单点调查的结果,这些调查嵌入了五个不同环境中分布在五个不同环境($λ$ orionis,orion a,b,银河平面和高纬度)中,以识别恒星形成的恒星形成的恒星形成,以识别恒星形成的恒星形成。我们使用Nobeyama 45-m望远镜在76-94 GHz的八个分子线中观察到这些核心。我们发现,早期类型的分子(例如CCS)的检测率较低,并且晚期分子(例如N $ _2 $ _2 $ _2 $ h $^+$,c-c $ _3 $ _3 $ _3 $ _2 $ _2 $)和剥夺的分子(例如,n $ _2 $ d $ d $^+$,dnc),dnc的率很高,dnc的率很高。进化。发现氘级分(D/H)随着距离的增加而减小,表明它遭受了远处的D/H对之间的差异光束稀释($> $> $ 1 kpc)。对于$λ$ ORIONIS,猎户座A和B位于相似的距离,D/H没有显着差异,这表明这三个区域之间观察到的化学特性没有系统的差异。我们在Orion区域中至少鉴定了至少八个高d/h核心,两个在高纬度处,最有可能接近恒星形成的开始。没有明确的证据表明无星阶段湍流的进化变化,这表明湍流的耗散不是恒星形成开始的主要机制,而从观测值的观测值中判断为0.04 PC。
We present the results of a single-pointing survey of 207 dense cores embedded in Planck Galactic Cold Clumps distributed in five different environments ($λ$ Orionis, Orion A, B, Galactic plane, and high latitudes) to identify dense cores on the verge of star formation for the study of the initial conditions of star formation. We observed these cores in eight molecular lines at 76-94 GHz using the Nobeyama 45-m telescope. We find that early-type molecules (e.g., CCS) have low detection rates and that late-type molecules (e.g., N$_2$H$^+$, c-C$_3$H$_2$) and deuterated molecules (e.g., N$_2$D$^+$, DNC) have high detection rates, suggesting that most of the cores are chemically evolved. The deuterium fraction (D/H) is found to decrease with increasing distance, indicating that it suffers from differential beam dilution between the D/H pair of lines for distant cores ($>$1 kpc). For $λ$ Orionis, Orion A, and B located at similar distances, D/H is not significantly different, suggesting that there is no systematic difference in the observed chemical properties among these three regions. We identify at least eight high D/H cores in the Orion region and two at high latitudes, which are most likely to be close to the onset of star formation. There is no clear evidence of the evolutionary change in turbulence during the starless phase, suggesting that the dissipation of turbulence is not a major mechanism for the beginning of star formation as judged from observations with a beam size of 0.04 pc.