论文标题
LIDAR点云中时间3D对象检测的LSTM方法
An LSTM Approach to Temporal 3D Object Detection in LiDAR Point Clouds
论文作者
论文摘要
在3D LiDAR数据中检测对象是用于自动驾驶和其他机器人应用程序的核心技术。尽管LIDAR数据是随着时间的流逝而获取的,但大多数3D对象检测算法中的大多数都针对每个帧独立提出对象边界框,并忽略了时间域中可用的有用信息。为了解决这个问题,在本文中,我们提出了一种基于LSTM的稀疏多帧3D对象检测算法。我们使用U-NET样式3D稀疏卷积网络来提取每个帧的LiDAR Point-Cloud的功能。这些功能与Last Frax中的隐藏和内存功能一起馈送到LSTM模块,以预测当前帧中的3D对象,以及传递给下一个帧的隐藏和内存功能。 Waymo打开数据集中的实验表明,我们的算法逐帧方法的表现优于7.5%[email protected],而其他多帧方法则使用1.2%,而每帧使用更少的内存和计算。据我们所知,这是第一项使用LSTM在稀疏点云中检测3D对象检测的工作。
Detecting objects in 3D LiDAR data is a core technology for autonomous driving and other robotics applications. Although LiDAR data is acquired over time, most of the 3D object detection algorithms propose object bounding boxes independently for each frame and neglect the useful information available in the temporal domain. To address this problem, in this paper we propose a sparse LSTM-based multi-frame 3d object detection algorithm. We use a U-Net style 3D sparse convolution network to extract features for each frame's LiDAR point-cloud. These features are fed to the LSTM module together with the hidden and memory features from last frame to predict the 3d objects in the current frame as well as hidden and memory features that are passed to the next frame. Experiments on the Waymo Open Dataset show that our algorithm outperforms the traditional frame by frame approach by 7.5% [email protected] and other multi-frame approaches by 1.2% while using less memory and computation per frame. To the best of our knowledge, this is the first work to use an LSTM for 3D object detection in sparse point clouds.