论文标题

紧凑型旋转配置在GR中的存在和独特性在二阶扰动理论

Existence and uniqueness of compact rotating configurations in GR in second order perturbation theory

论文作者

Mars, Marc, Reina, Borja, Vera, Raül

论文摘要

在总体相对论(GR)中,旋转流体体的存在和唯一性仍然很少。除了无限薄磁盘的限制情况外,固定旋转案例中唯一已知的全球结果(Heilig [14]和Makino [21] [Arxiv:1705.07392])在附近的GR中存在牛顿构型(在适当的其他限制下)中存在。在这项工作中,我们证明了在GR中的扰动理论中,平衡至二阶的僵化(缓慢)旋转流体体的存在和独特性。在强场策略中,最广泛使用的扰动框架是缓慢稳定旋转的恒星是Hartle-Thorne模型。该模型涉及许多假设,有些明确,例如赤道对称性或扰动参数与旋转成正比,但有些隐式,尤其是在扰动张量的结构和规则性及其在表面上匹配的条件上。在这项工作中,基于在[25]中获得的量规结果的基础,Hartle-Thorne模型完全源自第一原理,仅假设扰动描述了一个刚性旋转的有限的完美流体球(表面没有层),具有相同的状态性状态球作为静态球。通过仅施加基本的可不同性要求和界限,以二阶扰动理论对刚性旋转的流体球进行稳定分析。我们的结果特别证明,在这种近似水平下,时空确实必须是赤道对称的,并且由两个参数完全确定,即中心压力和流体的均匀角速度。

Existence and uniqueness of rotating fluid bodies in equilibrium is still poorly understood in General Relativity (GR). Apart from the limiting case of infinitely thin disks, the only known global results in the stationary rotating case (Heilig [14] and Makino [21] [arXiv:1705.07392]) show existence in GR nearby a Newtonian configuration (under suitable additional restrictions). In this work we prove existence and uniqueness of rigidly (slowly) rotating fluid bodies in equilibrium to second order in perturbation theory in GR. The most widely used perturbation framework to describe slowly rigidly rotating stars in the strong field regime is the Hartle-Thorne model. The model involves a number of hypotheses, some explicit, like equatorial symmetry or that the perturbation parameter is proportional to the rotation, but some implicit, particularly on the structure and regularity of the perturbation tensors and the conditions of their matching at the surface. In this work, with basis on the gauge results obtained in [25], the Hartle-Thorne model is fully derived from first principles and only assuming that the perturbations describe a rigidly rotating finite perfect fluid ball (with no layer at the surface) with the same barotropic equation of state as the static ball. Rigidly rotating fluid balls are analyzed consistently in second order perturbation theory by imposing only basic differentiability requirements and boundedness. Our results prove in particular that, at this level of approximation, the spacetime must be indeed equatorially symmetric and is fully determined by two parameters, namely the central pressure and the uniform angular velocity of the fluid.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源