论文标题

用于深图像压缩的通道级变量量化网络

Channel-Level Variable Quantization Network for Deep Image Compression

论文作者

Zhong, Zhisheng, Akutsu, Hiroaki, Aizawa, Kiyoharu

论文摘要

深图像压缩系统主要包含四个组件:编码器,量化,熵模型和解码器。为了优化这四个组件,提出了一个联合速率延伸框架,许多基于神经网络的深层方法在图像压缩方面取得了巨大成功。但是,几乎所有基于卷积神经网络的方法都同样处理通道特征图,从而降低了处理不同类型信息的灵活性。在本文中,我们提出了一个通道级变量量化网络,以动态分配更多的比特率,以为重要的通道分配更多的比特率,并为可忽略不计的通道撤回比特率。具体而言,我们提出了一个可变量化控制器。它由两个关键组成部分组成:通道重要性模块,它们可以在训练过程中动态地学习通道的重要性以及拆卸合并模块,该模块可以为不同的通道分配不同的比特率。我们还将量化器提出为高斯混合模型的方式。定量和定性实验验证了所提出的模型的有效性,并证明我们的方法可以实现卓越的性能,并可以产生更好的视觉重建。

Deep image compression systems mainly contain four components: encoder, quantizer, entropy model, and decoder. To optimize these four components, a joint rate-distortion framework was proposed, and many deep neural network-based methods achieved great success in image compression. However, almost all convolutional neural network-based methods treat channel-wise feature maps equally, reducing the flexibility in handling different types of information. In this paper, we propose a channel-level variable quantization network to dynamically allocate more bitrates for significant channels and withdraw bitrates for negligible channels. Specifically, we propose a variable quantization controller. It consists of two key components: the channel importance module, which can dynamically learn the importance of channels during training, and the splitting-merging module, which can allocate different bitrates for different channels. We also formulate the quantizer into a Gaussian mixture model manner. Quantitative and qualitative experiments verify the effectiveness of the proposed model and demonstrate that our method achieves superior performance and can produce much better visual reconstructions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源