论文标题

在普遍计算应用程序中,数据概要管理不确定性管理的智能方案

An Intelligent Scheme for Uncertainty Management of Data Synopses Management in Pervasive Computing Applications

论文作者

Kolomvatsos, Kostas

论文摘要

普遍的计算应用程序涉及围绕最终用户的智能组件融合以促进其活动。可以在物联网(IoT)和Edge Computing(EC)的庞大基础架构上提供此类应用程序。物联网设备收集将它们传输到EC和云的环境数据以进行进一步处理。 EC节点可能会成为各种处理活动的分布式数据集的主机。 EC的未来涉及许多与物联网设备和他们自己相互作用的节点以合作的方式实现所需的处理。结论这种合作方法的一个关键问题是,数据概要的交换使EC节点通知其同龄人中存在的数据。这些知识对于与处理活动的执行有关的决策将很有用。在本文中,我们提出了n个不确定性驱动模型以交换数据概要。我们认为,EC节点应延迟概要的交换,尤其是在存在与历史价值的显着差异时。我们的机制采用模糊逻辑(FL)系统来决定何时与先前报告的概要有显着差异,以决定新的介绍。我们的计划能够从众多信息中从众多消息中减轻网络,即使摘要的波动较低。我们分析描述我们的模型,并通过大量实验对其进行评估。我们的实验评估目标是根据消除不必要的消息来检测方法的效率,同时将立即知情的同伴节点保留为分布式数据集的重大统计变化。

Pervasive computing applications deal with the incorporation of intelligent components around end users to facilitate their activities. Such applications can be provided upon the vast infrastructures of Internet of Things (IoT) and Edge Computing (EC). IoT devices collect ambient data transferring them towards the EC and Cloud for further processing. EC nodes could become the hosts of distributed datasets where various processing activities take place. The future of EC involves numerous nodes interacting with the IoT devices and themselves in a cooperative manner to realize the desired processing. A critical issue for concluding this cooperative approach is the exchange of data synopses to have EC nodes informed about the data present in their peers. Such knowledge will be useful for decision making related to the execution of processing activities. In this paper, we propose n uncertainty driven model for the exchange of data synopses. We argue that EC nodes should delay the exchange of synopses especially when no significant differences with historical values are present. Our mechanism adopts a Fuzzy Logic (FL) system to decide when there is a significant difference with the previous reported synopses to decide the exchange of the new one. Our scheme is capable of alleviating the network from numerous messages retrieved even for low fluctuations in synopses. We analytically describe our model and evaluate it through a large set of experiments. Our experimental evaluation targets to detect the efficiency of the approach based on the elimination of unnecessary messages while keeping immediately informed peer nodes for significant statistical changes in the distributed datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源