论文标题
用于带电激发的扩展二阶多余代数图构造理论
Extended Second-Order Multireference Algebraic Diagrammatic Construction Theory for Charged Excitations
论文作者
论文摘要
我们报告了多次代数图解构建理论(MR-ADC)的新实施,以模拟在强相关的分子系统(EA/IP-MR-ADC)中的电子附着和电离。在我们最近在IP-MR-ADC上进行的工作[J。化学理论计算。 2019,15,5908],我们介绍了电子附件的二阶MR-ADC方法(EA-MR-ADC(2))的首次实现,以及两个扩展的二阶近似值(EA-和IP-MR-ADC(2)-X),这些近似值(EA-和IP-MR-ADC(2)-X)结合了对三阶电子相关效应的部分处理。引入有效哈密顿量的二阶幅度的较小近似值,我们的EA-和IP-MR-ADC(2)-X的实施具有较低的O(m^5)计算缩放,并具有基集大小的尺寸。此外,我们描述了在MR-ADCERTRON中求解的有效算法,并在MR-ADCERTRON上求解了第二阶宽度方程。 (NEVPT2)完全避免计算四粒子降低密度矩阵,而无需引入任何近似值或假想时间传播。对于八个小分子,碳二聚体和一个扭曲的乙烯的基准组,我们证明了EA-和IP-MR-ADC(2)-X的基准相似的精度与强签合的NEVPT2相似,同时具有较低的计算缩放量表,具有较低的计算扩展,并提供了有效的空间尺寸,并提供了有效地访问过渡性能。
We report a new implementation of multireference algebraic diagrammatic construction theory (MR-ADC) for simulations of electron attachment and ionization in strongly correlated molecular systems (EA/IP-MR-ADC). Following our recent work on IP-MR-ADC [J. Chem. Theory Comput. 2019, 15, 5908], we present the first implementation of the second-order MR-ADC method for electron attachment (EA-MR-ADC(2)), as well as two extended second-order approximations (EA- and IP-MR-ADC(2)-X) that incorporate a partial treatment of third-order electron correlation effects. Introducing a small approximation for the second-order amplitudes of the effective Hamiltonian, our implementation of EA- and IP-MR-ADC(2)-X has a low O(M^5) computational scaling with the basis set size M. Additionally, we describe an efficient algorithm for solving the first-order amplitude equations in MR-ADC and partially-contracted second-order N-electron valence perturbation theory (NEVPT2) that completely avoids computation of the four-particle reduced density matrices without introducing any approximations or imaginary-time propagation. For a benchmark set of eight small molecules, carbon dimer, and a twisted ethylene, we demonstrate that EA- and IP-MR-ADC(2)-X achieve accuracy similar to that of strongly-contracted NEVPT2, while having a lower computational scaling with the active space size and providing efficient access to transition properties.