论文标题

图伽马过程通用线性动力学系统

Graph Gamma Process Generalized Linear Dynamical Systems

论文作者

Kalantari, Rahi, Zhou, Mingyuan

论文摘要

我们介绍了图形伽马过程(GGP)线性动力学系统,以建模实价的多元时间序列。对于时间模式发现,模型下的潜在表示将时间序列分解为一组简约的多元子序列。在每个子序列中,不同的数据维度通常具有相似的时间模式,但可能显示出明显的幅度,因此允许所有子序列的叠加以在不同的数据维度下表现出不同的行为。我们通过用负二项式分布替换高斯观察层来进一步概括所提出的模型,以模拟多元计数时间序列。由提出的GGP产生的是无限的定向稀疏随机图,该图是通过乘以具有数量无限的二进制邻接矩阵来构建的,该矩阵共享相同的一组无数的无限节点。这些邻接矩阵中的每一个都与重量相关,以表明其激活强度,并在属于同一节点群落的有限子集之间放置有限数量的边缘。我们使用生成的随机图,其非零度节点的数量是有限的,以定义A(广义)线性动力学系统的潜在状态过渡矩阵的稀疏模式和尺寸。每个节点群落相对于整体激活强度的激活强度用于提取多元子序列,从而揭示了相应社区捕获的数据模式。在合成和现实世界的时间序列上,提出的非参数贝叶斯动态模型(随机初始初始化)与各种基线模型相比,始终表现出良好的预测性能,揭示了可解释的潜在状态过渡模式,并将时间序列分解为表现出色的表现出色的子序列。

We introduce graph gamma process (GGP) linear dynamical systems to model real-valued multivariate time series. For temporal pattern discovery, the latent representation under the model is used to decompose the time series into a parsimonious set of multivariate sub-sequences. In each sub-sequence, different data dimensions often share similar temporal patterns but may exhibit distinct magnitudes, and hence allowing the superposition of all sub-sequences to exhibit diverse behaviors at different data dimensions. We further generalize the proposed model by replacing the Gaussian observation layer with the negative binomial distribution to model multivariate count time series. Generated from the proposed GGP is an infinite dimensional directed sparse random graph, which is constructed by taking the logical OR operation of countably infinite binary adjacency matrices that share the same set of countably infinite nodes. Each of these adjacency matrices is associated with a weight to indicate its activation strength, and places a finite number of edges between a finite subset of nodes belonging to the same node community. We use the generated random graph, whose number of nonzero-degree nodes is finite, to define both the sparsity pattern and dimension of the latent state transition matrix of a (generalized) linear dynamical system. The activation strength of each node community relative to the overall activation strength is used to extract a multivariate sub-sequence, revealing the data pattern captured by the corresponding community. On both synthetic and real-world time series, the proposed nonparametric Bayesian dynamic models, which are initialized at random, consistently exhibit good predictive performance in comparison to a variety of baseline models, revealing interpretable latent state transition patterns and decomposing the time series into distinctly behaved sub-sequences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源